Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In non-rigid variation simulation, contact modeling is used to avoid the virtual penetration of the components in the adjacent areas. Numerical errors and convergence issues due to the deformation behavior of the interacting surfaces are limiting the computational efficiency of solving the contact problem. In this paper, a quadratic programming approach has been introduced based on the Lagrangian multiplier method for robust contact modeling in non-rigid variation simulation, and the performance of the proposed approach has been compared to the previously applied iterative and barrier function methods. The methods have been compared on three industrial reference cases, and the convergence and time-efficiency of each method are compared. The results show that robust optimization of the quadratic program associated with the contact model is highly dependent on the reduced stiffness matrix condition. Furthermore, it has been shown that robust and efficient contact computation in non-rigid variation simulation is achievable through the proposed augmented Lagrangian method.

References

1.
Liu
,
S. C.
, and
Hu
,
S. J.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
368
374
.
2.
Söderberg
,
R.
,
Wärmefjord
,
K.
,
Carlson
,
J. S.
, and
Lindkvist
,
L.
,
2017
, “
Toward a Digital Twin for Real-Time Geometry Assurance in Individualized Production
,”
CIRP Ann.
,
66
(
1
), pp.
137
140
.
3.
Tabar
,
R. S.
,
Lindkvist
,
L.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2022
, “
Efficient Joining Sequence Variation Analysis of Stochastic Batch Assemblies
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
040905
.
4.
Ungemach
,
G.
, and
Mantwill
,
F.
,
2009
, “
Efficient Consideration of Contact in Compliant Assembly Variation Analysis
,”
ASME J. Manuf. Sci. Eng.
,
131
(
1
), p.
011005
.
5.
Liao
,
X.
, and
Wang
,
G. G.
,
2007
, “
Non-Linear Dimensional Variation Analysis for Sheet Metal Assemblies by Contact Modeling
,”
Finite Elem. Anal. Des.
,
44
(
1–2
), pp.
34
44
.
6.
Camelio
,
J.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
,
2004
, “
Modeling Variation Propagation of Multi-station Assembly Systems With Compliant Parts
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
673
681
.
7.
Yu
,
K.
,
Jin
,
S.
,
Lai
,
X.
, and
Xing
,
Y.
,
2008
, “
Modeling and Analysis of Compliant Sheet Metal Assembly Variation
,”
Assemb. Auto.
,
28
(
3
), pp.
225
234
.
8.
Cheng
,
H.
,
Wang
,
R.-X.
,
Li
,
Y.
, and
Zhang
,
K.-F.
,
2012
, “
Modeling and Analyzing of Variation Propagation in Aeronautical Thin-Walled Structures Automated Riveting
,”
Assembly Auto.
,
32
(
1
), pp.
25
37
.
9.
Xing
,
W.
,
Zhang
,
J.
,
Song
,
C.
, and
Tin-Loi
,
F.
,
2019
, “
A Node-to-Node Scheme for Three-Dimensional Contact Problems Using the Scaled Boundary Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
347
, pp.
928
956
.
10.
Tabar
,
R. S.
,
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2020
, “
Efficient Spot Welding Sequence Optimization in a Geometry Assurance Digital Twin
,”
ASME J. Mech. Des.
,
142
(
10
), p.
102001
.
11.
Tabar
,
R. S.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2020
, “
Rapid Sequence Optimization of Spot Welds for Improved Geometrical Quality Using a Novel Stepwise Algorithm
,”
Eng. Optim.
,
53
(
5
), pp.
867
884
.
12.
Lupuleac
,
S.
,
Zaitseva
,
N.
,
Stefanova
,
M.
,
Berezin
,
S.
,
Shinder
,
J.
,
Petukhova
,
M.
, and
Bonhomme
,
E.
,
2019
, “
Simulation of the Wing-to-Fuselage Assembly Process
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
04
.
13.
Xie
,
L. S.
, and
Hsieh
,
C.
,
2002
, “
Clamping and Welding Sequence Optimisation for Minimising Cycle Time and Assembly Deformation
,”
Int. J. Mater. Prod. Technol.
,
17
(
5–6
), pp.
389
399
.
14.
Cai
,
W.
,
Hu
,
S. J.
, and
Yuan
,
J. X.
,
1997
, “
A Variational Method of Robust Fixture Configuration Design for 3-D Workpieces
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4A
), pp.
593
602
.
15.
Tabar
,
R. S.
,
Lorin
,
S.
,
Cromvik
,
C.
,
Lindkvist
,
L.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2021
, “
Efficient Spot Welding Sequence Simulation in Compliant Variation Simulation
,”
ASME J. Manuf. Sci. Eng.
,
143
(
7
), p.
071009
.
16.
Sadeghi Tabar
,
R.
,
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2021
, “
Critical Joint Identification for Efficient Sequencing
,”
J. Intell. Manuf.
,
32
(
3
), pp.
769
780
.
17.
Lorin
,
S.
,
Lindau
,
B.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2019
, “
Efficient Compliant Variation Simulation of Spot-Welded Assemblies
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
1
), p.
011007
.
18.
Qin
,
G.
,
Zhang
,
W.
, and
Wan
,
M.
,
2005
, “
Analysis and Optimal Design of Fixture Clamping Sequence
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
482
493
.
19.
Sadeghi Tabar
,
R.
,
Zheng
,
H.
,
Litwa
,
F.
,
Paetzold-Byhain
,
K.
,
Lindkvist
,
L.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2024
, “
Digital Twin-Based Clamping Sequence Analysis and Optimization for Improved Geometric Quality
,”
Appl. Sci.
,
14
(
2
), p.
510
.
20.
Wriggers
,
P.
, and
Laursen
,
T. A.
,
2006
,
Computational Contact Mechanics
, Vol.
2
,
Springer
,
Berlin/Heidelberg
.
21.
Dahlström
,
S.
, and
Lindkvist
,
L.
,
2006
, “
Variation Simulation of Sheet Metal Assemblies Using the Method of Influence Coefficients With Contact Modeling
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
615
622
11
22.
Lindau
,
B.
,
Lorin
,
S.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2016
, “
Efficient Contact Modeling in NonRigid Variation Simulation
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
1
), pp.
11002
11007
.
23.
Liu
,
L.
,
Yi
,
B.
, and
Li
,
D.
,
2023
, “
A Physics-Driven Method for Determining Wheel-Rail Contact Area With Gradient-Based Optimization
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
5
), p.
051006
.
24.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2015
, “
Contact and Mobility Simulation for Mechanical Assemblies Based on Skin Model Shapes
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
2
), p.
021009
.
25.
Sadeghi Tabar
,
R.
,
Lindau
,
B.
,
Lindkvist
,
L.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2022
, “
Contact Search Using a Kd-Tree for Non-Rigid Variation Simulation
”.
Volume 2B: Advanced Manufacturing of ASME International Mechanical Engineering Congress and Exposition
.
Oct. 30–Nov. 3
,
Columbus, OH
.
26.
Goka
,
E.
,
Homri
,
L.
,
Beaurepaire
,
P.
, and
Dantan
,
J.-Y.
,
2019
, “
Statistical Tolerance Analysis of Over-Constrained Mechanical Assemblies With Form Defects Considering Contact Types
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021010
.
27.
Cai
,
W. W.
,
Hsieh
,
C. -C.
,
Long
,
Y.
,
Marin
,
S. P.
, and
Oh
,
K. P.
,
2005
, “
Digital Panel Assembly Methodologies and Applications for Compliant Sheet Components
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
270
279
.
28.
Stefanova
,
M.
,
Minevich
,
O.
,
Baklanov
,
S.
,
Petukhova
,
M.
,
Lupuleac
,
S.
,
Grigor’ev
,
B.
, and
Kokkolaras
,
M.
,
2020
, “
Convex Optimization Techniques in Compliant Assembly Simulation
,”
Optim. Eng.
,
21
(
4
), pp.
1665
1690
.
29.
Mijar
,
A.
, and
Arora
,
J.
,
2000
, “
Review of Formulations for Elastostatic Frictional Contact Problems
,”
Struct. Multidiscipl. Optim.
,
20
, pp.
167
189
.
30.
Nocedal
,
J.
, and
Wright
,
S. J.
,
1999
,
Numerical Optimization
,
Springer
,
New York
.
31.
Pantano
,
A.
, and
Averill
,
R. C.
,
2002
, “
A Penalty-Based Finite Element Interface Technology
,”
Comput. Struct.
,
80
(
22
), pp.
1725
1748
.
32.
Boyd
,
S.
,
Parikh
,
N.
,
Chu
,
E.
,
Peleato
,
B.
,
Eckstein
,
J.
,
2011
, “
Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers
,”
Found. Trends Mach. Learn.
,
3
(
1
), pp.
1
122
.
33.
Stellato
,
B.
,
Banjac
,
G.
,
Goulart
,
P.
,
Bemporad
,
A.
, and
Boyd
,
S.
,
2020
, “
OSQP: An Operator Splitting Solver for Quadratic Programs
,”
Math. Program. Comput.
,
12
(
4
), pp.
637
672
.
34.
RD&T Technology AB
,
2017
. RD&T Software Manual.
You do not currently have access to this content.