Abstract

Requirements are frequently revised due to the iterative nature of the design process. If not properly managed, these changes may result in financial and time losses due to undesired propagating effect. Currently, predictive models to assist designers in making well-informed decisions prior to change implementation do not exist. Current modeling methods for managing requirements do not offer formal reasoning necessary to manage requirement change and its propagation. The ability to predict change during the design process may lead to valuable insights in designing artifacts more efficiently by minimizing unanticipated changes due to mismanaged requirement changes. Two research questions are addressed in this paper: (1) How do complex network metrics of requirements, considering both node and edge interferences, influence the predictability of requirement change propagation across different case studies? (2) How does the performance of the complex network metrics approach compare to the refined automated requirement change propagation prediction (R-ARCPP) tool, developed from our prior study, in accurately predicting requirement change propagation? Requirement changes are simulated by applying the node interference and the edge interference methods. It is found that complex network metrics can be used to predict requirement change propagation. Based on the studied data, the performance ranking of metrics is characterized by edge interference across the changes. The results reveal that the R-ARCPP tool ranks higher than comparatively performing complex network metrics.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
INCOSE
,
2006
,
Systems Engineering Handbook. A Guide for System Life Cycle Processes and Activities
,
John Wiley & Sons
,
Hoboken, NJ
.
2.
Palmer
,
G. I.
,
Morkos
,
B.
, and
Summers
,
J. D.
,
2010
, “
Investigation of Design Tools as Complexity Management Techniques
,”
International Design Engineering Technical Conferences and Computers & Information in Engineering Conferences, Volume 1: 36th Design Automation Conference, Parts A and B
,
Montreal, QC, Canada
,
Aug. 15–18
, pp.
511
522
.
3.
Morkos
,
B.
,
Shankar
,
P.
, and
Summers
,
J. D.
,
2012
, “
Predicting Requirement Change Propagation, Using Higher Order Design Structure Matrices: An Industry Case Study
,”
J. Eng. Des.
,
23
(
12
), pp.
905
926
.
4.
Cheng
,
H.
,
Xia
,
Y.
, and
Hu
,
X.
,
2007
, “
Requirements Change Management of Information System Based on Keyword Mapping
,”
The Sixth Wuhan International Conference on e-Business
,
Wuhan, China
,
May 26–27
, pp.
135
140
.
5.
Chen
,
Z. Y.
,
Yao
,
S.
,
Lin
,
J. Q.
,
Zeng
,
Y.
, and
Eberlein
,
A.
,
2007
, “
Formalisation of Product Requirements: From Natural Language Descriptions to Formal Specifications
,”
Int. J. Manuf. Res.
,
2
(
3
), pp.
362
387
.
6.
Ernst
,
N. A.
,
Mylopoulos
,
J.
, and
Wang
,
Y.
,
2009
, “Requirements Evolution and What (Research) to Do About It,”
Design Requirements Engineering: A Ten-Year Perspective. Lecture Notes in Business Information Processing
,
Vol. 14
,
K.
Lyytinen
,
P.
Loucopoulos
,
J.
Mylopoulos
, and
B.
Robinson
, eds.,
Springer
,
Berlin, Heidelberg
.
7.
Hein
,
P. H.
,
2015
,
Predicting Requirement Change Propagation Through Investigation of Physical and Functional Domain
,
Florida Institute of Technology
,
Melbourne, FL
.
8.
Morkos
,
B. W.
,
2012
,
Computational Representation and Reasoning Support for Requirements Change Management in Complex System Design
,
Clemson University
,
Clemson, SC
.
9.
Clarkson
,
P. J.
,
Simons
,
C.
, and
Eckert
,
C.
,
2004
, “
Predicting Change Propagation in Complex Design
,”
ASME J. Mech. Des.
,
126
(
5
), pp.
788
797
.
10.
Chen
,
Y.-M. M.
,
Shir
,
W.-S. S.
, and
Shen
,
C.-Y. Y.
,
2002
, “
Distributed Engineering Change Management for Allied Concurrent Engineering
,”
Int. J. Comput. Integr. Manuf.
,
15
(
2
), pp.
127
151
.
11.
Eckert
,
C.
,
Clarkson
,
P. J.
, and
Zanker
,
W.
,
2004
, “
Change and Customisation in Complex Engineering Domains
,”
Res. Eng. Des.
,
15
(
11
), pp.
1
21
.
12.
Lehman
,
M. M.
, and
Belady
,
L. A.
,
1985
,
Program Evolution: Processes of Software Change
,
Academic Press Professional, Inc.
,
Cambridge, MA
.
13.
Lam
,
W.
, and
Shankararaman
,
V.
,
1999
, “
Requirements Change: A Dissection of Management Issues
,”
Proceedings 25th EUROMICRO Conference. Informatics: Theory and Practice for the New Millennium
,
Milan, Italy
,
Sept. 8–10
, IEEE, pp.
244
251
.
14.
Ollinger
,
G. A.
, and
Stahovich
,
T. F.
,
2001
, “
RedesignIT—A Constraint-Based Tool for Managing Design Changes
,”
ASME Design Engineering Technical Conference
,
Pittsburgh, PA
,
Sept. 9–12
, pp.
197
207
.
15.
Ameri
,
F.
,
Summers
,
J. D.
,
Mocko
,
G. M.
, and
Porter
,
M.
,
2008
, “
Engineering Design Complexity: An Investigation of Methods and Measures
,”
Res. Eng. Des.
,
19
(
2
), pp.
161
179
.
16.
Morkos
,
B.
,
Mathieson
,
J.
, and
Summers
,
J. D.
,
2014
, “
Comparative Analysis of Requirements Change Prediction Models: Manual, Linguistic, and Neural Network
,”
Res. Eng. Des.
,
25
(
2
), pp.
139
156
.
17.
Shankar
,
P.
,
Morkos
,
B.
, and
Summers
,
J. D.
,
2012
, “
Reasons for Change Propagation: A Case Study in an Automotive OEM
,”
Res. Eng. Des.
,
23
(
4
), pp.
291
303
.
18.
Hein
,
P. H.
,
Voris
,
N.
, and
Morkos
,
B.
,
2017
, “
Predicting Requirement Change Propagation Through Investigation of Physical and Functional Domains
,”
Res. Eng. Des.
,
29
, pp.
309
328
.
19.
Hein
,
P. H.
,
Menon
,
V.
, and
Morkos
,
B.
,
2015
, “
Exploring Requirement Change Propagation Through the Physical and Functional Domain
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
ASME
, p.
V01BT02A051
.
20.
Morkos
,
B.
,
Joshi
,
S.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
,
2010
, “
Requirements and Data Content Evaluation of Industry In-House Data Management System
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
ASME
, Montreal, Canada
, Paper No. DETC2010-28548.
21.
Morkos
,
B.
, and
Summers
,
J. D.
,
2009
, “
Elicitation and Development of Requirements Through Integrated Methods
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 2: 29th Computers and Information in Engineering Conference, Parts A and B
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
1007
1015
.
22.
Summers
,
J. D.
,
Joshi
,
S.
, and
Morkos
,
B.
,
2014
, “
Requirements Evolution: Relating Functional and Non-Functional Requirement Change on Student Project Success
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
,
ASME
, p.
V003T04A002
.
23.
Joshi
,
S.
,
Shankar
,
P.
, and
Summers
,
J. D.
,
2012
, “Requirements in Engineering Design: What Are We Teaching,”
Tools and Methods for Competitive Engineering (TMCE 2012)
,
I.
Horvath
, ed.,
Karlsruhe
,
Germany
, p.
38
.
24.
Morkos
,
B.
,
Joshi
,
S.
, and
Summers
,
J. D.
,
2019
, “
Investigating the Impact of Requirements Elicitation and Evolution on Course Performance in a Pre-Capstone Design Course
,”
J. Eng. Des.
,
30
(
4–5
), pp.
155
179
.
25.
Chen
,
C.
,
Wei
,
S.
, and
Morkos
,
B.
,
2023
, “
Bridging the Knowledge Gap Between Design Requirements and CAD-A Joint Embedding Approach
,”
ASEE Annual Conference & Exposition
,
Baltimore, MD
,
June 25–28
.
26.
Hein
,
P. H.
,
Morkos
,
B.
, and
Sen
,
C.
,
2017
, “
Utilizing Node Interference Method and Complex Network Centrality Metrics to Explore Requirement Change Propagation
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 1: 37th Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
, p.
V001T02A081
.
27.
Hein
,
P. H.
,
Kames
,
E.
,
Chen
,
C.
, and
Morkos
,
B.
,
2022
, “
Reasoning Support for Predicting Requirement Change Volatility Using Complex Network Metrics
,”
J. Eng. Des.
,
33
(
11
), pp.
811
837
.
28.
Hein
,
P. H.
,
Kames
,
E.
,
Chen
,
C.
, and
Morkos
,
B.
,
2021
, “
Employing Machine Learning Techniques to Assess Requirement Change Volatility
,”
Res. Eng. Des.
,
32
(
2
), pp.
245
269
.
29.
Young
,
R. R.
,
2004
,
The Requirements Engineering Handbook
,
Artech House, Inc
,
Norwood, MA
.
30.
Wright
,
I. C.
,
1997
, “
A Review of Research Into Engineering Change Management: Implications for Product Design
,”
Des. Stud.
,
18
(
1
), pp.
33
42
.
31.
Huang
,
G. Q.
, and
Mak
,
K. L.
,
1999
, “
Current Practices of Engineering Change Management in UK Manufacturing Industries
,”
Int. J. Oper. Prod. Manag.
,
19
(
1
), pp.
21
37
.
32.
Terwiesch
,
C.
, and
Loch
,
C. H.
,
1999
, “
Managing the Process of Engineering Change Orders: The Case of the Climate Control System in Automobile Development
,”
J. Prod. Innov. Manage.
,
16
(
2
), pp.
160
172
.
33.
Pikosz
,
P.
, and
Malmqvist
,
J.
,
1998
, “
A Comparative Study of Engineering Change Management in Three Swedish Engineering Companies
,”
Design Engineering Technical Conferences
,
Atlanta, GA
,
Sept. 13–16
, p.
V007T07A006
.
34.
Reddi
,
K. R.
, and
Moon
,
Y. B.
,
2009
, “
A Framework for Managing Engineering Change Propagation
,”
Int. J. Innov. Learn.
,
6
(
5
), pp.
461
476
.
35.
Von Hagel
,
K. A.
, and
Ferguson
,
S. M.
,
2014
, “
Effect of Expert Data Variability in the Change Prediction Method
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
, p.
V02AT03A013
.
36.
Giffin
,
M.
,
de Weck
,
O.
,
Bounova
,
G.
,
Keller
,
R.
,
Eckert
,
C.
, and
Clarkson
,
P. J.
,
2009
, “
Change Propagation Analysis in Complex Technical Systems
,”
ASME J. Mech. Des.
,
131
(
8
), p.
081001
.
37.
Raffaeli
,
R.
,
Malatesta
,
M.
,
Marilungo
,
E.
, and
Germani
,
M.
,
2013
, “
An Approach for Managing Engineering Changes in Product Families
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
ASME
, p.
V03BT03A036
.
38.
Mcintosh
,
K.
,
1995
,
Engineering Data Management: A Guide to Successful Implementation
,
McGraw-Hill
,
London
.
39.
Fei
,
G.
,
2011
,
A Methodology for Engineering Design Change Analysis Using System Modelling and Knowledge Management Technologies
, Vol.
24.6
,
University of Greenwich
,
London, UK
, p.
535
.
40.
Loch
,
C. H.
, and
Terwiesch
,
C.
,
1999
, “
Accelerating the Process of Engineering Change Orders: Capacity and Congestion Effects
,”
Prod. Innov. Manage.
,
16
(
2
), pp.
145
159
.
41.
Koh
,
E. C. Y.
,
Caldwell
,
N. H. M.
, and
Clarkson
,
P. J.
,
2012
, “
A Method to Assess the Effects of Engineering Change Propagation
,”
Res. Eng. Des.
,
23
(
4
), pp.
329
351
.
42.
Hagel
,
K. A. V.
, and
Ferguson
,
S. M.
,
2014
, “
Effect of Expert Data Variability in Change Prediction Method
,”
Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
.
43.
Cohen
,
T.
, and
Fulton
,
R. E.
,
1998
, “
A Data Approach to Tracking and Evaluating Engineering Changes
,”
Design Engineering Technical Conferences
,
Atlanta, GA
.
44.
Ottosson
,
S.
,
1996
, “
Dynamic Product Development: Findings From Participating Action Research in a Fast New Product Development Process
,”
J. Eng. Des.
,
7
(
2
), pp.
151
169
.
45.
Andreou
,
A. S.
,
Zographos
,
A. C.
, and
Papadopoulos
,
G. A.
,
2003
, “
A Three-Dimensional Requirements Elicitation and Management Decision-Making Scheme for the Development of New Software Components
,”
Proceedings of the Fifth International Conference On Enterprise Information Systems (ICEIS)
,
Angers, France
,
Apr. 22–26
, pp.
3
13
.
46.
Kannapan
,
S. M.
, and
Marshek
,
K. M.
,
1992
, “A Schema for Negotiation Between Intelligent Design Agents in Concurrent Engineering,”
Intelligent Computer Aided Design
,
Elsevier Science Publishers
,
North Holland
, pp.
1
25
.
47.
L Dym
,
C.
,
1994
,
Engineering Design a Synthesis of Views
,
Cambridge University Press
,
New York
.
48.
Lehman
,
M.
,
1998
, “
Software Future: Managing Evolution, Software
,”
IEEE
,
15
(
1
), pp.
41
44
.
49.
Cutkosky
,
M. R.
, and
Tenenbaum
,
J. M.
,
1990
,
Toward a Computational Framework for Concurrent Engineering
,
IECON Industrial Electronics Society
,
Pacific Grove, CA
, p.
700
.
50.
Pahl
,
G.
, and
Beitz
,
W.
,
1998
,
Engineering Design: A Systematic Approach
,
Springer
,
London
.
51.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
,
1995
,
Product Design and Development
,
McGraw-Hill
,
New York
.
52.
Ullman
,
D. G.
,
2003
,
The Mechanical Design Process
,
McGraw-Hill
,
New York
.
53.
Hull
,
E.
,
Jackson
,
K.
, and
Dick
,
J.
,
2005
,
Requirements Engineering
,
Springer
,
London
.
54.
The Standish Group
,
1995
, “
The Standish Group Report
,”
Chaos
,
49
, pp.
1
8
.
55.
Smith
,
E.
,
2010
,
Re-Engineering a Trash/Recycling Collection Vehicle—Based on Challenging Customer Requirements
,
Clemson University
,
Clemson, SC
.
56.
Kobayashi
,
A.
, and
Maekawa
,
M.
,
2001
, “
Need-Based Requirements Change Management
,”
Proceedings of Eighth Annual IEEE International Conference and Workshop on the Engineering of Computer Based Systems
,
Washington, DC
,
Apr. 20
, pp.
171
178
.
57.
Ramzan
,
S.
, and
Ikram
,
N.
,
2005
, “
Making Decision in Requirement Change Management
,”
International Conference on Information and Communication Technologies
,
IEEE
, Karachi, Pakistan
, pp.
309
312
.
58.
Eason
,
S.
,
Dobson
,
K.
, and
Harker
,
J.
,
1993
, “
The Change and Evolution of Requirements as a Challenge to the Practice of Software Engineering
,”
IEEE International Symposium on Requirements Engineering
,
Los Alamitos, CA
,
Jan. 6
.
59.
Strens
,
R.
, and
Sugden
,
M.
,
1996
, “
Strategics, Tactics and Methods for Handling Change
,”
IEEE Symposium and Workshop on Engineering of Computer-Based Systems (ECBS)
,
Piscataway, NJ
,
Mar. 11–15
.
60.
Steward
,
D. V.
,
1981
, “
Design Structure System: A Method for Managing the Design of Complex Systems
,”
IEEE Trans. Eng. Manag.
,
EM-28
(
3
), pp.
71
74
.
61.
Eppinger
,
S. D.
,
Whitney
,
D. E.
,
Smith
,
R. P.
, and
Gebala
,
D. A.
,
1994
, “
A Model-Based Method for Organizing Tasks in Product Development
,”
Res. Eng. Des.
,
6
(
1
), pp.
1
13
.
62.
Chen
,
Y.
,
Cheng
,
P.
, and
Yin
,
J.
,
2010
, “
Change Propagation Analysis of Trustworthy Requirements Based on Dependency Relations
,”
2010 2nd IEEE International Conference on Information Management and Engineering
,
Chengdu, Sichuan, China
,
Apr. 16–18
, pp.
246
251
.
63.
Ibrahim
,
N.
,
Nasir
,
W. M.
,
Kadir
,
W.
, and
Deris
,
S.
,
2011
, “
An Experimental Design Method for Evaluating Usability Factor of ReChap Process Model
,”
Int. J. Innov. Comput.
,
1
(
1
).
64.
Ibrahim
,
N.
,
Wan Kadir
,
W.
,
Halim
,
S. A.
,
Deris
,
S.
, and
Elias
,
H.
,
2011
, “
ReChaP Prototype: A Tool for Simplifying Requirement Change Propagation to Software Design
,”
The 3rd International Conference on Software Technology and Engineering
,
Kuala Lumpur, Malaysia
,
Aug. 12–14
.
65.
Ibrahim
,
N.
,
Nasir
,
W. M.
,
Kadir
,
W.
, and
Deris
,
S.
,
2009
, “
Simplifying Requirement Change Propagation to Software Design
,”
5th International Conference on Information & Communication Technology and Systems
,
Surabaya, Indonesia
,
Nov. 17–18
.
66.
Ibrahim
,
N.
,
Wan Kadir
,
W. M. N.
, and
Deris
,
S.
,
2009
, “
Propagating Requirement Change Into Software High Level Designs Towards Resilient Software Evolution
,”
Proceedings—Asia-Pacific Software Engineering Conference, APSEC
,
Batu Ferringhi, Penang, Malaysia
,
Dec. 1–3
.
67.
Sharafi
,
A.
,
2012
,
Knowledge Discovery in Databases—Eine Analyse Des Änderungsmanagements in Der Produktentwicklung
,
Springer Fachmedien Wiesbaden
,
Wiesbaden, Germany
.
68.
Mehta
,
C. R.
,
2010
,
Knowledge-Based Methods for Evaluation of Engineering Changes
,
The University of Michigan
,
Ann Arbor, MI
.
69.
Kocar
,
V.
,
2006
,
Modeling Engineering Change Management Process in Virtual Collaborative Design Environments
,
Department of Mechanical and Industrial Engineering, Concordia University
,
Montreal, QC, Canada
.
70.
McLellan
,
J. M.
,
Morkos
,
B.
,
Mocko
,
G. G.
, and
Summers
,
J. D.
,
2010
, “
Requirement Modeling Systems for Mechanical Design: A Systematic Method for Evaluating Requirement Management Tools and Languages
,”
Proceedings of the ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 3: 30th Computers and Information in Engineering Conference, Parts A and B
,
Montreal, QC, Canada
,
Aug. 15–18
, pp.
1247
1257
.
71.
Suh
,
E. S.
,
de Weck
,
O. L.
, and
Change
,
D.
,
2007
, “
Flexible Product Platforms : Framework and Case Study
,”
Res. Eng. Des.
,
18
(
2
), pp.
67
89
.
72.
Pasqual
,
M. C.
, and
Weck
,
O. L. D.
,
2011
, “
Multilayer Network Model for Analysis and Management of Change Propagation
,”
International Conference on Engineering Design, ICED
,
Copenhagen, Denmark
,
Aug. 15–18
, pp.
1
13
.
73.
Colombo
,
E. F.
,
Cascini
,
G.
, and
de Weck
,
O. L.
,
2015
, “
Impact of Architecture Types and Degree of Modularity on Change Propagation Indices
,”
International Conference on Engineering Design, ICED15
,
Politecnico di Milano and Politecnico di Torino Milan, Italy
,
July
.
74.
Wang
,
R.
,
Huang
,
R.
, and
Qu
,
B.
,
2014
, “
Network-Based Analysis of Software Change Propagation
,”
Sci. World J.
,
2014
, pp.
1
10
.
75.
Feng
,
S. C.
,
Moges
,
T.
,
Park
,
H.
,
Yakout
,
M.
,
Jones
,
A. T.
,
Ko
,
H.
, and
Witherell
,
P.
,
2023
, “
Functional Requirements of Software Tools for Laser-Based Powder Bed Fusion Additive Manufacturing for Metals
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
031005
.
76.
Chen
,
C.
, and
Morkos
,
B.
,
2023
, “
Exploring Topic Modelling for Generalising Design Requirements in Complex Design
,”
J. Eng. Des.
,
34
(
11
), pp.
922
940
.
77.
Chen
,
C.
,
Mullis
,
J.
, and
Morkos
,
B.
,
2021
, “
A Topic Modeling Approach to Study Design Requirements
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference)
,
Virtual, Online
,
Aug. 17–19
,
ASME
, p.
V03AT03A021
.
78.
Mullis
,
J.
,
Chen
,
C.
,
Morkos
,
B.
, and
Ferguson
,
S.
,
2024
, “
Deep Neural Networks in Natural Language Processing for Classifying Requirements by Origin and Functionality: An Application of BERT in System Requirements
,”
ASME J. Mech. Des.
,
146
(
4
), p.
041401
.
79.
Chen
,
C.
,
Carroll
,
C.
, and
Morkos
,
B.
,
2023
, “
From Text to Images: Linking System Requirements to Images Using Joint Embedding
,”
Proc. Des. Soc.
,
2023
(
3
), pp.
1985
1994
.
80.
Hansen
,
J.-T.
, and
Rosen
,
D. W.
,
2019
, “
A Product Family Design Method for Configuration and Spatial Layout Requirements
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
3
), p.
031008
.
81.
Runji
,
J. M.
,
Lee
,
Y.-J.
, and
Chu
,
C.-H.
,
2022
, “
User Requirements Analysis on Augmented Reality-Based Maintenance in Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
5
), p.
050901
.
82.
Hoepfner
,
G.
,
Nachmann
,
I.
,
Zerwas
,
T.
,
Berroth
,
J. K.
,
Kohl
,
J.
,
Guist
,
C.
,
Rumpe
,
B.
, and
Jacobs
,
G.
,
2023
, “
Towards a Holistic and Functional Model-Based Design Method for Mechatronic Cyber-Physical Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
5
), p.
051001
.
83.
Barbedienne
,
R.
,
Penas
,
O.
,
Choley
,
J.-Y.
, and
Hehenberger
,
P.
,
2019
, “
Modeling Framework for a Consistent Integration of Geometry Knowledge During Conceptual Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021009
.
84.
Brix Nerenst
,
T.
,
Ebro
,
M.
,
Nielsen
,
M.
,
Bhadani
,
K.
,
Asbjörnsson
,
G.
,
Eifler
,
T.
, and
Lau Nielsen
,
K.
,
2022
, “
Sequential Design Process for Screening and Optimization of Robustness and Reliability Based on Finite Element Analysis and Meta-Modeling
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
040902
.
85.
Das
,
S. K.
, and
Swain
,
A. K.
,
2021
, “
An Ontology-Based Framework for Decision Support in Assembly Variant Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
2
), p.
021007
.
86.
Guo
,
X.
,
Huang
,
Z.
,
Liu
,
Y.
,
Zhao
,
W.
, and
Yu
,
Z.
,
2023
, “
Harnessing Multi-domain Knowledge for User-Centric Product Conceptual Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
6
), p.
060807
.
87.
Arlitt
,
R. M.
, and
Van Bossuyt
,
D. L.
,
2019
, “
A Generative Human-in-the-Loop Approach for Conceptual Design Exploration Using Flow Failure Frequency in Functional Models
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
3
), p.
031001
.
88.
Jing
,
L.
,
Li
,
Z.
,
Peng
,
X.
,
Li
,
J.
, and
Jiang
,
S.
,
2019
, “
A Relative Equilibrium Decision Approach for Concept Design Through Fuzzy Cooperative Game Theory
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
041001
.
89.
Menon
,
V.
,
2015
,
Application of Complex Network Metrics to Support Computational Reasoning of Requirement Change Propagation in Complex System Design
,
Florida Institute of Technology
,
Melbourne, FL
.
90.
Dankelmann
,
P.
,
Goddard
,
W.
,
Henning
,
M. a.
, and
Swart
,
H. C.
,
1999
, “
Generalized Eccentricity, Radius, and Diameter in Graphs
,”
Networks
,
34
(
4
), pp.
312
319
.
91.
Koschützki
,
D.
,
Lehmann
,
K. a.
,
Peeters
,
L.
,
Richter
,
S.
,
Tenfelde-Podehl
,
D.
, and
Zlotowski
,
O.
,
2005
, “
3 Centrality Indices, Network Analysis
,”
Methodol. Found.
,
3418
, pp.
16
61
.
92.
Hage
,
P.
, and
Harary
,
F.
,
1995
, “
Eccentricity and Centrality in Networks
,”
Soc. Netw.
,
17
(
1
), pp.
57
63
.
93.
Latora
,
V.
, and
Marchiori
,
M.
,
2001
, “
Efficient Behavior of Small-World Networks
,”
Phys. Rev. Lett.
,
87
(
19
), p.
198701
.
94.
Rubinov
,
M.
, and
Sporns
,
O.
,
2010
, “
Complex Network Measures of Brain Connectivity: Uses and Interpretations
,”
Neuroimage
,
52
(
3
), pp.
1059
1069
.
95.
Costa
,
L. F.
,
Rodrigues
,
F. A.
,
Travieso
,
G.
, and
Villas Boas
,
P. R.
,
2008
, “
Characterization of Complex Networks : A Survey of Measurements
,”
Adv. Phys.
,
56
(
1
), pp.
167
242
.
96.
Goldshtein
,
V.
,
Koganov
,
G. a.
, and
Surdutovich
,
G. I.
,
2004
, “
Vulnerability and Hierarchy of Complex Networks
,”
arXiv preprint
.
97.
Latora
,
V.
, and
Marchiori
,
M.
,
2004
, Vulnerability and Protection of Critical Infrastructures, p.
4
.
98.
Fagiolo
,
G.
,
2007
, “
Clustering in Complex Directed Networks
,”
Phys. Rev. E
,
76
(
2
), pp.
1
8
.
99.
Newman
,
M. E. J.
,
2003
, “
The Structure and Function of Complex Networks
,”
SIAM Rev.
,
45
(
2
), pp.
167
256
.
100.
Dorogovtsev
,
S. N.
, and
Mendes
,
J. F. F.
,
2004
, “
The Shortest Path to Complex Networks
,”
arXiv preprint
.
101.
Newman
,
M.
,
2010
,
Networks: An Introduction
,
Oxford University Press
,
Northamptonshire, UK
.
102.
Barrat
,
A.
,
Barthélemy
,
M.
,
Pastor-Satorras
,
R.
, and
Vespignani
,
A.
,
2004
, “
The Architecture of Complex Weighted Networks
,”
Proc. Natl. Acad. Sci. U S A
,
101
(
11
), pp.
3747
3752
.
103.
Dangalchev
,
C.
,
2006
, “
Residual Closeness in Networks
,”
Phys. A: Stat. Mech. Appl.
,
365
(
2
), pp.
556
564
.
104.
Freeman
,
L. C.
,
1978
, “
Centrality in Social Networks Conceptual Clarification
,”
Soc. Netw.
,
1
(
3
), pp.
215
239
.
105.
Valente
,
T. W.
,
Coronges
,
K.
,
Lakon
,
C.
, and
Costenbader
,
E.
,
2008
, “
How Correlated Are Network Centrality Measures?
,”
Connect (Tor)
,
28
(
1
), pp.
16
26
.
106.
Latora
,
V.
, and
Marchiori
,
M.
,
2007
, “
A Measure of Centrality Based on Network Efficiency
,”
New J. Phys.
,
9
(
6
), pp.
188
188
.
107.
Hwang
,
W.
,
Cho
,
Y.
,
Zhang
,
A.
, and
Remanathan
,
M.
,
2006
, “
Bridging Centrality : Identifying Bridging Nodes in Scale-Free Networks
,”
12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
Philadelphia, PA
,
Aug. 20–23
.
108.
Bloechl
,
F.
,
Theis
,
F. J.
,
Vega-Redondo
,
F.
, and
Fisher
,
E. O.
,
2010
, “
Which Sectors of a Modern Economy Are Most Central?
,”
CESifo Working Paper Ser.
,
3175
, pp.
1
13
.
109.
Noh
,
J. D.
, and
Rieger
,
H.
,
2004
, “
Random Walks on Complex Networks
,”
Phys. Rev. Lett.
,
92
(
11
), p.
118701
.
110.
Bollobás
,
B.
,
2001
,
Random Graphs
,
Trinity College, Cambridge and University of Memphis
,
Memphis, TN
.
111.
Honey
,
C. J.
,
Kotter
,
R.
,
Breakspear
,
M.
, and
Sporns
,
O.
,
2007
, “
Network Structure of Cerebral Cortex Shapes Functional Connectivity on Multiple Time Scales
,”
Proc. Natl. Acad. Sci.
,
104
(
24
), pp.
10240
10245
.
112.
Konganti
,
K.
,
Wang
,
G.
,
Yang
,
E.
, and
Cai
,
J. J.
,
2013
, “
SBEToolbox: A Matlab Toolbox for Biological Network Analysis
,”
Evol. Bioinform.
,
9
(
9
), pp.
355
362
.
113.
Bonacich
,
P.
,
1987
, “
Power and Centrality: A Family of Measures
,”
Am. J. Sociol.
,
92
(
5
), pp.
1170
1182
.
114.
Bonacich
,
P.
, and
Lloyd
,
P.
,
2001
, “
Eigenvector-Like Measures of Centrality for Asymmetric Relations
,”
Soc. Netw.
,
23
(
3
), pp.
191
201
.
115.
Ghosh
,
R.
, and
Lerman
,
K.
,
2011
, “
Parameterized Centrality Metric for Network Analysis
,”
Phys. Rev. E
,
83
(
6
), p.
066118
.
116.
Katz
,
L.
,
1953
, “
A New Status Index Derived From Sociometric Analysis
,”
Psychometrika
,
18
(
1
), pp.
39
43
.
117.
Estrada
,
E.
, and
Rodriguez-Velazquez
,
J. A.
,
2005
, “
Subgraph Centrality in Complex Networks
,”
Phys. Rev. E
,
71
(
5
), p.
056103
.
118.
Zuo
,
X. N.
,
Ehmke
,
R.
,
Mennes
,
M.
,
Imperati
,
D.
,
Castellanos
,
F. X.
,
Sporns
,
O.
, and
Milham
,
M. P.
,
2012
, “
Network Centrality in the Human Functional Connectome
,”
Cereb. Cortex
,
22
(
8
), pp.
1862
1875
.
119.
Hagmann
,
P.
,
Cammoun
,
L.
,
Gigandet
,
X.
,
Meuli
,
R.
,
Honey
,
C. J.
,
Van Wedeen
,
J.
, and
Sporns
,
O.
,
2008
, “
Mapping the Structural Core of Human Cerebral Cortex
,”
PLoS Biol.
,
6
(
7
), pp.
1479
1493
.
120.
Brin
,
S.
, and
Page
,
L.
,
1998
, “
The Anatomy of a Large-Scale Hypertextual Web Search Engine BT
,”
Comput. Netw. ISDN Syst.
,
30
(
1–7
), pp.
107
117
.
121.
Kleinberg
,
J. M.
,
1999
, “
Authoritative Sources in a Hyperlinked Environment
,”
J. ACM
,
46
(
5
), pp.
604
632
.
122.
Shankar
,
P.
,
Morkos
,
B.
,
Yadav
,
D.
, and
Summers
,
J. D.
,
2020
, “
Towards the Formalization of Non-Functional Requirements in Conceptual Design
,”
Res. Eng. Des.
,
31
(
4
), pp.
449
469
.
123.
Cohen
,
R.
,
Erez
,
K.
,
Ben-Avraham
,
D.
, and
Havlin
,
S.
,
2000
, “
Resilience of the Internet to Random Breakdowns
,”
Phys. Rev. Lett.
,
85
(
21
), pp.
4626
4628
.
124.
Albert
,
R.
, and
Barabási
,
A.-L.
,
2002
, “
Statistical Mechanics of Complex Networks
,”
Rev. Mod. Phys.
,
74
(
1
), pp.
47
97
.
125.
Chen
,
P. Y.
,
Cheng
,
S. M.
, and
Chen
,
K. C.
,
2012
, “
Smart Attacks in Smart Grid Communication Networks
,”
IEEE Commun. Mag.
,
50
(
8
), pp.
24
29
.
126.
Schwartz
,
N.
,
Cohen
,
R.
,
Ben-Avraham
,
D.
,
Barabási
,
A. L.
, and
Havlin
,
S.
,
2002
, “
Percolation in Directed Scale-Free Networks
,”
Phys. Rev. E
,
66
(
1
), p.
015104
.
127.
Scardon
,
G.
, and
Laudanna
,
C.
,
2011
, “
Network Centralities Interference and Robustness
,”
Int. J. Complex Syst. Sci.
,
1
(
2
), pp.
164
168
.
128.
Salkind
,
D.
, and
J
,
N. J.
,
2006
,
Encyclopedia of Measurement and Statistics
,
SAGE Publications, Inc
,
Newbury Park, CA
.
129.
Friedman
,
M.
,
1937
, “
The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance
,”
J. Am. Stat. Assoc.
,
32
(
200
), pp.
675
701
.
130.
Friedman
,
M.
,
1940
, “
A Comparison of Alternative Tests of Significance for the Problem of $m$ Rankings
,”
Ann. Math. Stat.
,
11
(
1
), pp.
86
92
.
131.
Salkind
,
N. J.
,
2010
,
Encyclopedia of Research Design
,
SAGE Publications, Inc
,
Newbury Park, CA
.
132.
Demšar
,
J.
,
2006
, “
Statistical Comparisons of Classifiers Over Multiple Data Sets
,”
J. Mach. Learn. Res.
,
7
, pp.
1
30
.
133.
Madjarov
,
G.
,
Kocev
,
D.
,
Gjorgjevikj
,
D.
, and
Deroski
,
S.
,
2012
, “
An Extensive Experimental Comparison of Methods for Multi-label Learning
,”
Pattern Recogn.
,
45
(
9
), pp.
3084
3104
.
134.
Veček
,
N.
,
Črepinšek
,
M.
, and
Mernik
,
M.
,
2017
, “
On the Influence of the Number of Algorithms, Problems, and Independent Runs in the Comparison of Evolutionary Algorithms
,”
Appl. Soft Comput. J.
,
54
, pp.
23
45
.
135.
Nemenyi
,
P.
,
1963
,
Distribution-Free Multiple Comparisons
,
Princeton University
,
Princeton, NJ
.
136.
Dodge
,
Y.
,
2008
, “Spearman Rank Correlation Coefficient,”
The Concise Encyclopedia of Statistics
,
Springer New York
,
New York
, pp.
502
505
.
You do not currently have access to this content.