Abstract

The temperature history of an additively manufactured part plays a critical role in determining process–structure–property relationships in fusion-based additive manufacturing (AM) processes. Therefore, fast thermal simulation methods are needed for a variety of AM tasks, from temperature history prediction for part design and process planning to in situ temperature monitoring and control during manufacturing. However, conventional numerical simulation methods fall short in satisfying the strict requirements of time efficiency in these applications due to the large space and time scales of the required multiscale simulation. While data-driven surrogate models are of interest for their rapid computation capabilities, the performance of these models relies on the size and quality of the training data, which is often prohibitively expensive to create. Physics-informed neural networks (PINNs) mitigate the need for large datasets by imposing physical principles during the training process. This work investigates the use of a PINN to predict the time-varying temperature distribution in a part during manufacturing with laser powder bed fusion (L-PBF). Notably, the use of the PINN in this study enables the model to be trained solely on randomly synthesized data. These training data are both inexpensive to obtain, and the presence of stochasticity in the dataset improves the generalizability of the trained model. Results show that the PINN model achieves higher accuracy than a comparable artificial neural network trained on labeled data. Further, the PINN model trained in this work maintains high accuracy in predicting temperature for laser path scanning strategies unseen in the training data.

References

1.
Blakey-Milner
,
B.
,
Gradl
,
P.
,
Snedden
,
G.
,
Brooks
,
M.
,
Pitot
,
J.
,
Lopez
,
E.
,
Leary
,
M.
, and
Berto
,
F.
,
2021
, “
Metal Additive Manufacturing in Aerospace: A Review
,”
Mater. Des.
,
209
, p.
110008
.
2.
Loh
,
G. H.
,
Pei
,
E.
,
Harrison
,
D.
, and
Monzón
,
M. D.
,
2018
, “
An Overview of Functionally Graded Additive Manufacturing
,”
Addit. Manuf.
,
23
, pp.
34
44
.
3.
Nazir
,
A.
,
Abate
,
K. M.
,
Kumar
,
A.
, and
Jeng
,
J.-Y.
,
2019
, “
A State-of-the-Art Review on Types, Design, Optimization, and Additive Manufacturing of Cellular Structures
,”
Int. J. Adv. Manuf. Technol.
,
104
(
9
), pp.
3489
3510
.
4.
Narra
,
S. P.
,
2022
, “
Powder Bed Fusion–Metals
,”
Encyclopedia of Materials: Metals and Alloys
,
3
(
1
), pp.
85
94
.
5.
Wang
,
C.
,
Tan
,
X.
,
Tor
,
S.
, and
Lim
,
C.
,
2020
, “
Machine Learning in Additive Manufacturing: State-of-the-Art and Perspectives
,”
Addit. Manuf.
,
36
, p.
101538
.
6.
Kouraytem
,
N.
,
Li
,
X.
,
Tan
,
W.
,
Kappes
,
B.
, and
Spear
,
A. D.
,
2021
, “
Modeling Process–Structure–Property Relationships in Metal Additive Manufacturing: A Review on Physics-Driven Versus Data-Driven Approaches
,”
J. Phys.: Maters
,
4
(
3
), p.
032002
.
7.
Luo
,
Q.
,
Yin
,
L.
,
Simpson
,
T. W.
, and
Beese
,
A. M.
,
2023
, “
Dataset of Process-Structure-Property Feature Relationship for Laser Powder Bed Fusion Additive Manufactured Ti-6Al-4V Material.
Data in Brief
,
46
, p.
108911
.
8.
Popova
,
E.
,
Rodgers
,
T. M.
,
Gong
,
X.
,
Cecen
,
A.
,
Madison
,
J. D.
, and
Kalidindi
,
S. R.
,
2017
, “
Process-Structure Linkages Using a Data Science Approach: Application to Simulated Additive Manufacturing Data
,”
Int. Mater. Manufact. Innovat.
,
6
(
1
), pp.
54
68
.
9.
Gordon
,
J. V.
,
Narra
,
S. P
,
Cunningham
,
R. W.
,
Liu
,
H.
,
Chen
,
H.
,
Suter
,
R. M.
,
Beuth
,
J. L.
, and
Rollett
,
A. D.
,
2020
, “
Defect Structure Process Maps for Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
36
, p.
101552
.
10.
Fang
,
L.
,
Cheng
,
L.
,
Glerum
,
J. A.
,
Bennett
,
J.
,
Cao
,
J.
, and
Wagner
,
G. J.
,
2022
, “
Data-Driven Analysis of Process, Structure, and Properties of Additively Manufactured Inconel 718 Thin Walls
,”
npj Comput. Mater.
,
8
(
1
), pp.
1
15
.
11.
Thanki
,
A.
,
Goossens
,
L.
,
Ompusunggu
,
A. P.
,
Bayat
,
M.
,
Bey-Temsamani
,
A.
,
Van Hooreweder
,
B.
,
Kruth
,
J.-P.
, and
Witvrouw
,
A.
,
2022
, “
Melt Pool Feature Analysis Using a High-Speed Coaxial Monitoring System for Laser Powder Bed Fusion of Ti-6al-4 V Grade 23
,”
Int. J. Adv. Manuf. Technol.
,
120
(
9
), pp.
6497
6514
.
12.
Nijhuis
,
B.
, and
Geijselaers
,
H.
,
2021
, “
Efficient Thermal Simulation of Large-Scale Metal Additive Manufacturing Using Hot Element Addition
,”
Comput. Struct.
,
245
, p.
106463
.
13.
Ding
,
D.
,
Zhang
,
S.
,
Lu
,
Q.
,
Pan
,
Z.
,
Li
,
H.
, and
Wang
,
K.
,
2021
, “
The Well-Distributed Volumetric Heat Source Model for Numerical Simulation of Wire Arc Additive Manufacturing Process
,”
Mater. Today Communicat.
,
27
, p.
102430
.
14.
Ness
,
K. L.
,
Paul
,
A.
,
Sun
,
L.
, and
Zhang
,
Z.
,
2022
, “
Towards a Generic Physics-Based Machine Learning Model for Geometry Invariant Thermal History Prediction in Additive Manufacturing
,”
J. Mater. Process. Technol.
,
302
, p.
117472
.
15.
Dong
,
W.
,
Jimenez
,
X. A.
, and
To
,
A. C.
,
2023
, “
Temperature-Dependent Modified Inherent Strain Method for Predicting Residual Stress and Distortion of Ti6Al–4V Walls Manufactured by Wire-Arc Directed Energy Deposition
,”
Addit. Manuf.
,
62
, p.
103386
.
16.
Cook
,
P. S.
, and
Murphy
,
A. B.
,
2020
, “
Simulation of Melt Pool Behaviour During Additive Manufacturing: Underlying Physics and Progress
,”
Addit. Manuf.
,
31
, p.
100909
.
17.
Wang
,
L.
,
Zhang
,
Y.
, and
Yan
,
W.
,
2020
, “
Evaporation Model for Keyhole Dynamics During Additive Manufacturing of Metal
,”
Phys. Rev. Appl.
,
14
(
6
), p.
064039
.
18.
Kiss
,
A. M.
,
Fong
,
A. Y.
,
Calta
,
N. P.
,
Thampy
,
V.
,
Martin
,
A. A.
,
Depond
,
P. J.
,
Wang
,
J.
, et al.,
2019
, “
Laser-Induced Keyhole Defect Dynamics During Metal Additive Manufacturing
,”
Adv. Eng. Mater.
,
21
(
10
), p.
1900455
.
19.
Mukherjee
,
T.
, and
DebRoy
,
T.
,
2018
, “
Mitigation of Lack of Fusion Defects in Powder Bed Fusion Additive Manufacturing
,”
J. Manufact. Processes
,
36
, pp.
442
449
.
20.
Vastola
,
G.
,
Zhang
,
G.
,
Pei
,
Q.
, and
Zhang
,
Y.-W.
,
2015
, “
Modeling and Control of Remelting in High-Energy Beam Additive Manufacturing
,”
Addit. Manuf.
,
7
, pp.
57
63
.
21.
Zhu
,
Y.-Y.
,
Tang
,
H.-B.
,
Li
,
Z.
,
Xu
,
C.
, and
He
,
B.
,
2019
, “
Solidification Behavior and Grain Morphology of Laser Additive Manufacturing Titanium Alloys
,”
J. Alloys. Compd.
,
777
, pp.
712
716
.
22.
Dong
,
W.
,
Liang
,
X.
,
Chen
,
Q.
,
Hinnebusch
,
S.
,
Zhou
,
Z.
, and
To
,
A. C.
,
2021
, “
A New Procedure for Implementing the Modified Inherent Strain Method With Improved Accuracy in Predicting Both Residual Stress and Deformation for Laser Powder Bed Fusion
,”
Addit. Manuf.
,
47
, p.
102345
.
23.
Megahed
,
M.
,
Mindt
,
H.-W.
,
Willems
,
J.
,
Dionne
,
P.
,
Jacquemetton
,
L.
,
Craig
,
J.
,
Ranade
,
P.
, and
Peralta
,
A.
,
2019
, “
LPBF Right the First Time the Right Mix Between Modeling and Experiments
,”
Int. Mater. Manufact. Innovat.
,
8
(
2
), pp.
194
216
.
24.
King
,
W. E.
,
Anderson
,
A. T.
,
Ferencz
,
R. M.
,
Hodge
,
N. E.
,
Kamath
,
C.
,
Khairallah
,
S. A.
, and
Rubenchik
,
A. M.
,
2015
, “
Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041304
.
25.
Mozaffar
,
M.
,
Liao
,
S.
,
Jeong
,
J.
,
Xue
,
T.
, and
Cao
,
J.
,
2023
, “
Differentiable Simulation for Material Thermal Response Design in Additive Manufacturing Processes
,”
Addit. Manuf.
,
61
, p.
103337
.
26.
Sun
,
Z.
,
Ma
,
Y.
,
Ponge
,
D.
,
Zaefferer
,
S.
,
Jägle
,
E. A.
,
Gault
,
B.
,
Rollett
,
A. D.
, and
Raabe
,
D.
,
2022
, “
Thermodynamics-Guided Alloy and Process Design for Additive Manufacturing
,”
Nat. Commun.
,
13
(
1
), pp.
1
12
.
27.
Mahmoud
,
D.
,
Magolon
,
M.
,
Boer
,
J.
,
Elbestawi
,
M.
, and
Mohammadi
,
M. G.
,
2021
, “
Applications of Machine Learning in Process Monitoring and Controls of L-PBF Additive Manufacturing: A Review
,”
Appl. Sci.
,
11
(
24
), p.
11910
.
28.
AbouelNour
,
Y.
, and
Gupta
,
N.
,
2022
, “
In-Situ Monitoring of Sub-surface and Internal Defects in Additive Manufacturing: A Review
,”
Mater. Design
,
222
, p.
111063
.
29.
Gu
,
G. X.
,
Chen
,
C. -T.
,
Richmond
,
D. J.
, and
Buehler
,
M. J.
,
2018
, “
Bioinspired Hierarchical Composite Design Using Machine Learning: Simulation, Additive Manufacturing, and Experiment
,”
Mater. Horiz.
,
5
(
5
), pp.
939
945
.
30.
Wang
,
R.
, and
Behandish
,
M.
,
2022
, “
Surrogate Modeling for Physical Systems With Preserved Properties and Adjustable Tradeoffs
,” Preprint arXiv:2202.01139.
31.
Stathatos
,
E.
, and
Vosniakos
,
G.-C.
,
2019
, “
Real-Time Simulation for Long Paths in Laser-Based Additive Manufacturing: A Machine Learning Approach
,”
Int. J. Adv. Manuf. Technol.
,
104
(
5
), pp.
1967
1984
.
32.
Zhu
,
Q.
,
Liu
,
Z.
, and
Yan
,
J.
,
2021
, “
Machine Learning for Metal Additive Manufacturing: Predicting Temperature and Melt Pool Fluid Dynamics Using Physics-Informed Neural Networks
,”
Computat. Mech.
,
67
(
2
), pp.
619
635
.
33.
Kats
,
D.
,
Wang
,
Z.
,
Gan
,
Z.
,
Liu
,
W. K.
,
Wagner
,
G. J.
, and
Lian
,
Y.
,
2022
, “
A Physics-Informed Machine Learning Method for Predicting Grain Structure Characteristics in Directed Energy Deposition
,”
Comput. Mater. Sci.
,
202
, p.
110958
.
34.
Karniadakis
,
G. E.
,
Kevrekidis
,
I. G.
,
Lu
,
L.
,
Perdikaris
,
P.
,
Wang
,
S.
, and
Yang
,
L.
,
2021
, “
Physics-Informed Machine Learning
,”
Nat. Rev. Phys.
,
3
(
6
), pp.
422
440
.
35.
Elhamod
,
M.
,
Bu
,
J.
,
Singh
,
C.
,
Redell
,
M.
,
Ghosh
,
A.
,
Podolskiy
,
V.
,
Lee
,
W.-C.
, and
Karpatne
,
A.
,
2022
, “
CoPhy-PGNN: Learning Physics-Guided Neural Networks With Competing Loss Functions for Solving Eigenvalue Problems
,”
ACM Trans. Intel. Syst. Technol.
,
13
(
6
), pp.
1
23
.
36.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
37.
Shin
,
Y.
,
Darbon
,
J.
, and
Karniadakis
,
G. E.
,
2020
, “
On the Convergence of Physics Informed Neural Networks for Linear Second-Order Elliptic and Parabolic Type PDEs
,”
Commun. Comput. Phys.
,
28
(
5
), pp.
2042
2074
.
38.
Sing
,
S.
,
Kuo
,
C.
,
Shih
,
C.
,
Ho
,
C.
, and
Chua
,
C.
,
2021
, “
Perspectives of Using Machine Learning in Laser Powder Bed Fusion for Metal Additive Manufacturing
,”
Virtual Phys. Protot.
,
16
(
3
), pp.
372
386
.
39.
Robbins
,
J.
,
Owen
,
S.
,
Clark
,
B.
, and
Voth
,
T.
,
2016
, “
An Efficient and Scalable Approach for Generating Topologically Optimized Cellular Structures for Additive Manufacturing
,”
Addit. Manuf.
,
12
, pp.
296
304
.
40.
Hassanin
,
H.
,
Alkendi
,
Y.
,
Elsayed
,
M.
,
Essa
,
K.
, and
Zweiri
,
Y.
,
2020
, “
Controlling the Properties of Additively Manufactured Cellular Structures Using Machine Learning Approaches
,”
Adv. Eng. Mater.
,
22
(
3
), p.
1901338
.
41.
Rastegarzadeh
,
S.
,
Wang
,
J.
, and
Huang
,
J.
,
2023
, “
Neural Network-Assisted Design: A Study of Multiscale Topology Optimization With Smoothly Graded Cellular Structures
,”
ASME J. Mech. Des.
,
145
(
1
), p.
011701
.
42.
Williams
,
G.
,
Meisel
,
N. A.
,
Simpson
,
T. W.
, and
McComb
,
C.
,
2019
, “
Design Repository Effectiveness for 3d Convolutional Neural Networks: Application to Additive Manufacturing
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111701
.
43.
Zhang
,
Y.
,
Dong
,
G.
,
Yang
,
S.
, and
Zhao
,
Y. F.
,
2019
, “
Machine Learning Assisted Prediction of the Manufacturability of Laser-Based Powder Bed Fusion Process
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, Vol. 59179, American Society of Mechanical Engineers, p. V001T02A008.
44.
Whitt
,
A.
,
Seede
,
R.
,
Ye
,
J.
,
Elverud
,
M.
,
Vaughan
,
M.
,
Elwany
,
A.
,
Arroyave
,
R.
, and
Karaman
,
I.
,
2023
, “
A Process Optimization Framework for Laser Direct Energy Deposition: Densification, Microstructure, and Mechanical Properties of an FECR Alloy
,”
J. Manufact. Proc.
,
85
, pp.
434
449
.
45.
Wang
,
P.
,
Yang
,
Y.
, and
Moghaddam
,
N. S.
,
2022
, “
Process Modeling in Laser Powder Bed Fusion Towards Defect Detection and Quality Control Via Machine Learning: The State-of-the-Art and Research Challenges
,”
J. Manufact. Proc.
,
73
, pp.
961
984
.
46.
Fu
,
Y.
,
Downey
,
A. R.
,
Yuan
,
L.
,
Zhang
,
T.
,
Pratt
,
A.
, and
Balogun
,
Y.
,
2022
, “
Machine Learning Algorithms for Defect Detection in Metal Laser-Based Additive Manufacturing: A Review
,”
J. Manufact. Proc.
,
75
, pp.
693
710
.
47.
Yang
,
Z.
,
Lu
,
Y.
,
Yeung
,
H.
, and
Kirshnamurty
,
S.
,
2020
, “
3d Build Melt Pool Predictive Modeling for Powder Bed Fusion Additive Manufacturing
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
,
Aug. 17–19
, Vol. 83983, American Society of Mechanical Engineers, p. V009T09A046.
48.
Kwon
,
O.
,
Kim
,
H. G.
,
Kim
,
W.
,
Kim
,
G.-H.
, and
Kim
,
K.
,
2020
, “
A Convolutional Neural Network for Prediction of Laser Power Using Melt-Pool Images in Laser Powder Bed Fusion
,”
IEEE Access
,
8
, pp.
23255
23263
.
49.
Bugatti
,
M.
, and
Colosimo
,
B. M.
,
2022
, “
Towards Real-Time In-Situ Monitoring of Hot-Spot Defects in L-PBF: A New Classification-Based Method for Fast Video-Imaging Data Analysis
,”
J. Intell. Manufact.
,
33
(
1
), pp.
293
309
.
50.
Ren
,
Y.
, and
Wang
,
Q.
,
2020
, “
Physics-Informed Gaussian Process Based Optimal Control of Laser Powder Bed Fusion
,”
Dynamic Systems and Control Conference
,
Virtual, Online
,
Oct. 5–7
, Vol. 84287, American Society of Mechanical Engineers, p. V002T24A001.
51.
Ren
,
Y.
,
Wang
,
Q.
, and
Michaleris
,
P.
,
2019
, “
Machine-Learning Based Thermal-Geometric Predictive Modeling of Laser Powder Bed Fusion Additive Manufacturing
,”
Dynamic Systems and Control Conference
,
Park City, UT
,
Oct. 8–11
, Vol. 59148, American Society of Mechanical Engineers, p. V001T10A001
52.
Moges
,
T.
,
Yang
,
Z.
,
Jones
,
K.
,
Feng
,
S.
,
Witherell
,
P.
, and
Lu
,
Y.
,
2021
, “
Hybrid Modeling Approach for Melt-Pool Prediction in Laser Powder Bed Fusion Additive Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
5
), p.
050902
.
53.
Smoqi
,
Z.
,
Gaikwad
,
A.
,
Bevans
,
B.
,
Kobir
,
M. H.
,
Craig
,
J.
,
Abul-Haj
,
A.
,
Peralta
,
A.
, and
Rao
,
P.
,
2022
, “
Monitoring and Prediction of Porosity in Laser Powder Bed Fusion Using Physics-Informed Meltpool Signatures and Machine Learning
,”
J. Mater. Process. Technol.
,
304
, p.
117550
.
54.
Vela
,
B.
,
Mehalic
,
S.
,
Sheikh
,
S.
,
Elwany
,
A.
,
Karaman
,
I.
, and
Arróyave
,
R.
,
2022
, “
Evaluating the Intrinsic Resistance to Balling of Alloys: A High-Throughput Physics-Informed and Data-Enabled Approach
,”
Additive Manufact. Lett.
,
3
, p.
100085
.
55.
Wang
,
Y.
,
Yao
,
Q.
,
Kwok
,
J. T.
, and
Ni
,
L. M.
,
2020
, “
Generalizing From a Few Examples: A Survey on Few-Shot Learning
,”
ACM Comput. Surveys (csur)
,
53
(
3
), pp.
1
34
.
56.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2017
, “
Physics Informed Deep Learning (Part i): Data-Driven Solutions of Nonlinear Partial Differential Equations
,” Preprint arXiv:1711.10561.
57.
Liao
,
S.
,
Xue
,
T.
,
Jeong
,
J.
,
Webster
,
S.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2023
, “
Hybrid Thermal Modeling of Additive Manufacturing Processes Using Physics-Informed Neural Networks for Temperature Prediction and Parameter Identification
,”
Comput. Mech.
,
72
(
1
), pp.
499
512
.
58.
Silvestri
,
M.
,
Lombardi
,
M.
, and
Milano
,
M.
,
2021
, “
Injecting Domain Knowledge in Neural Networks: A Controlled Experiment on a Constrained Problem
,”
International Conference on Integration of Constraint Programming
,
Vienna, Austria
,
July 5–8
, Springer, pp.
266
282
.
59.
Jin
,
X.
,
Cai
,
S.
,
Li
,
H.
, and
Karniadakis
,
G. E.
,
2021
, “
Nsfnets (Navier-Stokes Flow Nets): Physics-Informed Neural Networks for the Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
426
, p.
109951
.
60.
Yang
,
Y.
, and
Perdikaris
,
P.
,
2019
, “
Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
,”
J. Comput. Phys.
,
394
, pp.
136
152
.
61.
Meng
,
X.
,
Li
,
Z.
,
Zhang
,
D.
, and
Karniadakis
,
G. E.
,
2020
, “
Ppinn: Parareal Physics-Informed Neural Network for Time-Dependent PDEs
,”
Comput. Methods. Appl. Mech. Eng.
,
370
, p.
113250
.
62.
Kharazmi
,
E.
,
Zhang
,
Z.
, and
Karniadakis
,
G. E.
,
2019
, “
Variational Physics-Informed Neural Networks for Solving Partial Differential Equations
,” Preprint arXiv:1912.00873.
63.
Li
,
M.
, and
McComb
,
C.
,
2022
, “
Using Physics-Informed Generative Adversarial Networks to Perform Super-Resolution for Multiphase Fluid Simulations
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
044501
.
64.
Noakoasteen
,
O.
,
Wang
,
S.
,
Peng
,
Z.
, and
Christodoulou
,
C.
,
2020
, “
Physics-Informed Deep Neural Networks for Transient Electromagnetic Analysis
,”
IEEE Open J. Antennas Propagation
,
1
, pp.
404
412
.
65.
Liu
,
D.
, and
Wang
,
Y.
,
2019
, “
Multi-fidelity Physics-Constrained Neural Network and Its Application in Materials Modeling
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121403
.
66.
Stockman
,
T.
,
Schneider
,
J. A.
,
Walker
,
B.
, and
Carpenter
,
J. S.
,
2019
, “
A 3d Finite Difference Thermal Model Tailored for Additive Manufacturing
,”
Jom
,
71
(
3
), pp.
1117
1126
.
67.
Shen
,
N.
, and
Chou
,
K.
,
2012
, “
Thermal Modeling of Electron Beam Additive Manufacturing Process: Powder Sintering Effects
,”
International Manufacturing Science and Engineering Conference
,
Notre Dame, IN
,
June 4–8,
, pp.
287
295
.
68.
Roberts
,
I. A.
,
Wang
,
C.
,
Esterlein
,
R.
,
Stanford
,
M.
, and
Mynors
,
D.
,
2009
, “
A Three-Dimensional Finite Element Analysis of the Temperature Field During Laser Melting of Metal Powders in Additive Layer Manufacturing
,”
Int. J. Mach. Tools. Manuf.
,
49
(
12–13
), pp.
916
923
.
69.
Zhang
,
Z.
,
Huang
,
Y.
,
Kasinathan
,
A. R.
,
Shahabad
,
S. I.
,
Ali
,
U.
,
Mahmoodkhani
,
Y.
, and
Toyserkani
,
E.
,
2019
, “
3-Dimensional Heat Transfer Modeling for Laser Powder-Bed Fusion Additive Manufacturing With Volumetric Heat Sources Based on Varied Thermal Conductivity and Absorptivity
,”
Optics Laser Tech.
,
109
, pp.
297
312
.
70.
Tan
,
M.
, and
Le
,
Q.
,
2019
, “
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
,”
International Conference on Machine Learning
,
Long Beach, CA
,
June 9–15
, PMLR, pp.
6105
6114
.
71.
Slotwinski
,
J. A.
,
Garboczi
,
E. J.
,
Stutzman
,
P. E.
,
Ferraris
,
C. F.
,
Watson
,
S. S.
, and
Peltz
,
M. A.
,
2014
, “
Characterization of Metal Powders Used for Additive Manufacturing
,”
J. Res. Natl. Inst. Stand. Technol.
,
119
(
1
), p.
460
.
72.
Masoomi
,
M.
,
Soltani-Tehrani
,
A.
,
Shamsaei
,
N.
, and
Thompson
,
S. M.
,
2018
, “
Convection Heat Transfer Coefficients for Laser Powder Bed Fusion
,”
2018 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 13–15
.
73.
Ripetskiy
,
A.
,
Zelenov
,
S.
,
Kuznetsova
,
E.
, and
Rabinskiy
,
L.
,
2018
, “
Evaluation of the Thermal Processes and Simulation Methods for Additive Manufacturing Based on the Geometry Voxel Representation
,”
Key Engineering Materials
,
771
(
1
), pp.
91
96
.
74.
Ladani
,
L.
,
Romano
,
J.
,
Brindley
,
W.
, and
Burlatsky
,
S.
,
2017
, “
Effective Liquid Conductivity for Improved Simulation of Thermal Transport in Laser Beam Melting Powder Bed Technology
,”
Addit. Manuf.
,
14
, pp.
13
23
.
75.
Buchmayr
,
B.
,
Panzl
,
G.
,
Walzl
,
A.
, and
Wallis
,
C.
,
2017
, “
Laser Powder Bed Fusion—Materials Issues and Optimized Processing Parameters for Tool Steels, AlSiMg-and CuCrZr-Alloys
,”
Adv. Eng. Mater.
,
19
(
4
), p.
1600667
.
76.
Ninpetch
,
P.
,
Kowitwarangkul
,
P.
,
Mahathanabodee
,
S.
,
Tongsri
,
R.
, and
Ratanadecho
,
P.
,
2019
, “
Thermal and Melting Track Simulations of Laser Powder Bed Fusion (L-PBF)
,”
IOP Conference Series: Materials Science and Engineering
,
Bangkok, Thailand
,
Dec. 17–21
, Vol. 526, IOP Publishing, p.
012030
.
77.
Woolson
,
R. F.
,
2007
, “
Wilcoxon Signed-Rank Test
,”
Wiley Encyclopedia of Clinical Trials
, pp.
1
3
.
78.
Oyeka
,
I. C. A.
, and
Ebuh
,
G. U.
,
2012
, “
Modified Wilcoxon Signed-Rank Test
,”
Open J. Stat.
,
2
(
2
), pp.
172
176
.
79.
Durango
,
A.
, and
Refugio
,
C.
,
2018
, “
An Empirical Study on Wilcoxon Signed Rank Test
,”
J. Negros Orient. State Univ.
,
8
(
8
), pp.
130
136
.
80.
Pierce
,
J.
,
Williams
,
G.
,
Simpson
,
T. W.
,
Meisel
,
N. A.
, and
McComb
,
C.
,
2021
, “
Stochastically Trained Physics-Informed Neural Networks: Application to Thermal Analysis in Metal Laser Powder Bed Fusion
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
,
Aug. 17–19
, Vol. 85383, American Society of Mechanical Engineers, p. V03AT03A004.
You do not currently have access to this content.