Abstract

The unstructured data available on the websites of manufacturing suppliers and contractors can provide valuable insights into their technological and organizational capabilities. However, since the capability data are often represented in an unstructured and informal fashion using natural language text, they do not lend themselves well to computational analysis. The objective of this work is to propose framework to enable automated classification and ranking of manufacturing suppliers based on their online capability descriptions in the context of a supplier search and discovery use case. The proposed text analytics framework is supported by a formal thesaurus that uses Simple Knowledge Organization System (SKOS) that provides lexical and structural semantics. Normalized Google Distance (NGD) is used as the metric for measuring the relatedness of terms when ranking suppliers based on their similarities with the queried capabilities. The proposed framework is validated experimentally using a hypothetical supplier search scenario. The results indicate that the generated ranked list is highly correlated with human judgment, especially when the search space is partitioned into multiple classes of suppliers with distinct capabilities. However, the correlation decreases when multiple overlapping classes of suppliers are merged together to form a heterogenous search space. The proposed framework can support supplier screening and discovery solutions by improving the precision, reliability, and intelligence of their underlying search engines.

References

1.
Queiroz
,
M. M.
,
Fosso Wamba
,
S.
,
Chiappetta Jabbour
,
C. J.
, and
Machado
,
M. C.
,
2022
, “
Supply Chain Resilience in the UK During the Coronavirus Pandemic: A Resource Orchestration Perspective
,”
Int. J. Prod. Econ.
,
245
, p.
108405
.
2.
Toorajipour
,
R.
,
Sohrabpour
,
V.
,
Nazarpour
,
A.
,
Oghazi
,
P.
, and
Fischl
,
M.
,
2021
, “
Artificial Intelligence in Supply Chain Management: A Systematic Literature Review
,”
J. Bus. Res.
,
122
, pp.
502
517
.
3.
Zandbiglari
,
K.
,
Ameri
,
F.
, and
Javadi
,
M.
,
2021
, “
Capability Language Processing (CLP): Classification and Ranking of Manufacturing Suppliers Based on Unstructured Capability Data
,” American Society of Mechanical Engineers Digital Collection.
4.
Ameri
,
F.
, and
Dutta
,
D.
,
2008
, “
Results of a Survey on Web-Based Approaches to Global Outsourcing in the Manufacturing Industry
,” American Society of Mechanical Engineers Digital Collection, pp.
519
528
.
5.
Brundage
,
M. P.
,
Sexton
,
T.
,
Hodkiewicz
,
M.
,
Dima
,
A.
, and
Lukens
,
S.
,
2021
, “
Technical Language Processing: Unlocking Maintenance Knowledge
,”
Manuf. Lett.
,
27
, pp.
42
46
.
6.
Sabbagh
,
R.
,
Ameri
,
F.
, and
Yoder
,
R.
,
2018
, “
Thesaurus-Guided Text Analytics Technique for Capability-Based Classification of Manufacturing Suppliers
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
3
), p.
031009
.
7.
Sabbagh
,
R.
, and
Ameri
,
F.
,
2018
, “
Supplier Clustering Based on Unstructured Manufacturing Capability Data
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
, Paper No.
V01BT02A036
.
8.
Ameri
,
F.
, and
Bernstein
,
W.
,
2017
, “A Thesaurus-Guided Framework for Visualization of Unstructured Manufacturing Capability Data,”
Advances in Production Management Systems. The Path to Intelligent, Collaborative and Sustainable Manufacturing
,
H.
Lödding
,
R.
Riedel
,
K.-D.
Thoben
,
G.
von Cieminski
, and
D.
Kiritsis
, eds.,
Springer International Publishing
,
Cham
, pp.
202
212
.
9.
Mihalcea
,
R.
, “
Corpus-Based and Knowledge-Based Measures of Text Semantic Similarity
”, p.
6
.
10.
Rada
,
R.
,
Mili
,
H.
,
Bicknell
,
E.
, and
Blettner
,
M.
,
1989
, “
Development and Application of a Metric on Semantic Nets
,”
IEEE Trans. Syst. Man Cybern.
,
19
(
1
), pp.
17
30
.
11.
Leacock
,
C.
, and
Chodorow
,
M.
,
1998
, “Combining Local Context and WordNet Similarity for Word Sense Identification,” WordNet: An Electronic Lexical Database, p.
265
.
12.
Zhu
,
G.
, and
Iglesias
,
C. A.
,
2016
, “
Computing Semantic Similarity of Concepts in Knowledge Graphs
,”
IEEE Trans. Knowl. Data Eng.
,
29
(
1
), pp.
72
85
.
13.
Li
,
Y.
,
Bandar
,
Z. A.
, and
Mclean
,
D.
,
2003
, “
An Approach for Measuring Semantic Similarity Between Words Using Multiple Information Sources
,”
IEEE Trans. Knowl. Data Eng.
,
15
(
4
), pp.
871
882
.
14.
Dong
,
L.
,
Srimani
,
P. K.
, and
Wang
,
J. Z.
,
2010
, “
WEST: Weighted-Edge Based Similarity Measurement Tools for Word Semantics
,”
2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology
,
IEEE
, pp.
216
223
.
15.
Sánchez
,
D.
,
Batet
,
M.
,
Isern
,
D.
, and
Valls
,
A.
,
2012
, “
Ontology-Based Semantic Similarity: A New Feature-Based Approach
,”
Expert Syst. Appl.
,
39
(
9
), pp.
7718
7728
.
16.
Banerjee
,
S.
, and
Pedersen
,
T.
,
2003
, “
Extended Gloss Overlaps as a Measure of Semantic Relatedness
,”
Proceedings of the 18th International Joint Conference on Artificial Intelligence
,
Acapulco, Mexico
,
Aug. 9–15
, p.
6
.
17.
Lastra-Díaz
,
J. J.
,
Goikoetxea
,
J.
,
Hadj Taieb
,
M. A.
,
García-Serrano
,
A.
,
Ben Aouicha
,
M.
, and
Agirre
,
E.
,
2019
, “
A Reproducible Survey on Word Embeddings and Ontology-Based Methods for Word Similarity: Linear Combinations Outperform the State of the Art
,”
Eng. Appl. Artif. Intell.
,
85
, pp.
645
665
.
18.
Jiang
,
Y.
,
Zhang
,
X.
,
Tang
,
Y.
, and
Nie
,
R.
,
2015
, “
Feature-Based Approaches to Semantic Similarity Assessment of Concepts Using Wikipedia
,”
Inf. Process. Manag.
,
51
(
3
), pp.
215
234
.
19.
Martis
,
R.
,
Acharya
,
U. R.
,
Lim
,
C.
,
Mandana
,
K.
,
Ray
,
A.
, and
Chakraborty
,
C.
,
2013
, “
Application of Higher Order Cumulant Features for Cardiac Health Diagnosis Using ECG Signals
,”
Int. J. Neural Syst.
,
23
, p.
1350014
.
20.
Yang
,
Z.
,
Dai
,
Z.
,
Yang
,
Y.
,
Carbonell
,
J.
,
Salakhutdinov
,
R.
, and
Le
,
Q. V.
,
2020
, “
XLNet: Generalized Autoregressive Pretraining for Language Understanding
,” arXiv:1906.08237 [cs].
21.
Resnik
,
P.
,
1995
, “
Using Information Content to Evaluate Semantic Similarity in a Taxonomy
,” arXiv:cmp-lg/9511007.
22.
Lin
,
D.
,
1998
, “
An Information-Theoretic Definition of Similarity
,”
ICML '98: Proceedings of the Fifteenth International Conference on Machine Learning
,
San Francisco, CA
.
23.
Jiang
,
J. J.
, and
Conrath
,
D. W.
,
1997
, “
Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy
,”
Proceedings of the 10th Research on Computational Linguistics International Conference, The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)
,
Taipei, Taiwan
,
August
, pp.
19
33
.
24.
Han
,
J.
,
Sarica
,
S.
,
Shi
,
F.
, and
Luo
,
J.
,
2022
, “
Semantic Networks for Engineering Design: State of the Art and Future Directions
,”
ASME J. Mech. Des.
,
144
(
2
), p.
020802
.
25.
Siddharth
,
L.
,
Blessing
,
L. T. M.
,
Wood
,
K. L.
, and
Luo
,
J.
,
2021
, “
Engineering Knowledge Graph From Patent Database
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021008
.
26.
McInnes
,
B.
,
Pedersen
,
T.
,
Pakhomov
,
S.
,
Liu
,
Y.
, and
Melton-Meaux
,
G.
,
2013
, “
UMLS: Similarity: Measuring the Relatedness and Similarity of Biomedical Concepts
,”
Proceedings of the 2013 NAACL HLT Demonstration Session, Association for Computational Linguistics
,
Atlanta, GA
,
June 9–14
, pp.
28
31
.
27.
Gorman
,
J.
, and
Curran
,
J. R.
,
2006
, “
Scaling Distributional Similarity to Large Corpora
,”
Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics
,
Sydney, Australia
,
July
, pp.
361
368
.
28.
Mohammad
,
S. M.
, and
Hirst
,
G.
,
2012
, “
Distributional Measures of Semantic Distance: A Survey
,” arXiv:1203.1858 [cs].
29.
Landauer
,
T. K.
, and
Dumais
,
S. T.
,
1997
, “
A Solution to Plato’s Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge
,”
Psychol. Rev.
,
104
(
2
), pp.
211
240
.
30.
Cilibrasi
,
R.
, and
Vitanyi
,
P. M. B.
,
2007
, “The Google Similarity Distance,” arXiv:cs/0412098.
31.
Liu
,
Q.
,
Wang
,
K.
,
Li
,
Y.
, and
Liu
,
Y.
,
2020
, “
Data-Driven Concept Network for Inspiring Designers’ Idea Generation
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
3
), p.
031004
.
32.
Andrade
,
S.
, and
Walsh
,
H.
,
2023
, “
Discovering a Failure Taxonomy for Early Design of Complex Engineered Systems Using Natural Language Processing
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
031001
.
33.
Jiang
,
S.
,
Sarica
,
S.
,
Song
,
B.
,
Hu
,
J.
, and
Luo
,
J.
,
2022
, “
Patent Data for Engineering Design: A Critical Review and Future Directions
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
6
), p.
060902
.
34.
Ameri
,
F.
,
Yoder
,
R.
, and
Zandbiglari
,
K.
,
2020
, “SKOS Tool: A Tool for Creating Knowledge Graphs to Support Semantic Text Classification,”
Advances in Production Management Systems. Towards Smart and Digital Manufacturing
,
B.
Lalic
,
V.
Majstorovic
,
U.
Marjanovic
,
G.
von Cieminski
, and
D.
Romero
, eds.,
Springer International Publishing
,
Cham
, pp.
263
271
.
35.
Korde
,
V.
,
2012
, “
Text Classification and Classifiers: A Survey
,”
IJAIA
,
3
(
2
), pp.
85
99
.
36.
Wang
,
F.
,
Wang
,
Z.
,
Li
,
Z.
, and
Wen
,
J.-R.
,
2014
, “
Concept-Based Short Text Classification and Ranking
,”
Proceedings of the 23rd ACM International Conference on Information and Knowledge Management
,
Shanghai, China
,
Nov. 3–7
, pp.
1069
1078
.
37.
Keßler
,
C.
,
Raubal
,
M.
, and
Janowicz
,
K.
,
2007
, “The Effect of Context on Semantic Similarity Measurement,”
On the Move to Meaningful Internet Systems 2007: OTM 2007 Workshops
,
R.
Meersman
,
Z.
Tari
, and
P.
Herrero
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
1274
1284
.
38.
Qiu
,
Y.
, and
Jin
,
Y.
,
2022
, “
Engineering Document Summarization: A Bidirectional Language Model-Based Approach
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
6
), p.
061004
.
You do not currently have access to this content.