Abstract

The intersection between engineering design, manufacturing, and artificial intelligence offers countless opportunities for breakthrough improvements in how we develop new technology. However, achieving this synergy between the physical and the computational worlds involves overcoming a core challenge: few specialists educated today are trained in both engineering design and artificial intelligence. This fact, combined with the recency of both fields’ adoption and the antiquated state of many institutional data management systems, results in an industrial landscape that is relatively devoid of high-quality data and individuals who can rapidly use that data for machine learning and artificial intelligence development. In order to advance the fields of engineering design and manufacturing to the next level of preparedness for the development of effective artificially intelligent, data-driven analytical and generative tools, a new design for X principle must be established: design for artificial intelligence (DfAI). In this paper, a conceptual framework for DfAI is presented and discussed in the context of the contemporary field and the personas which drive it.

References

1.
Salzman
,
H.
,
1989
, “
Computer-Aided Design: Limitations in Automating Design and Drafting
,”
IEEE Trans. Eng. Manage.
,
36
(
4
), pp.
252
261
.
2.
Laxon
,
W. R.
,
1977
, “
Selecting and Evaluating CAD Systems
,”
Comput. Des.
,
9
(
4
), pp.
233
237
.
3.
Koch
,
S.
,
Matveev
,
A.
,
Jiang
,
Z.
,
Williams
,
F.
,
Artemov
,
A.
,
Burnaev
,
E.
,
Alexa
,
M.
,
Zorin
,
D.
, and
Panozzo
,
D.
,
2019
, “
ABC: A Big Cad Model Dataset for Geometric Deep Learning
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 16–20
, pp.
9593
9603
.
4.
Chang
,
A. X.
,
Funkhouser
,
T.
,
Guibas
,
L.
,
Hanrahan
,
P.
,
Huang
,
Q.
,
Li
,
Z.
,
Savarese
,
S.
, et al
,
2015
, “
ShapeNet: An Information-Rich 3D Model Repository
,” arXiv preprint arXiv:1512.03012.
5.
Zhirong Wu
,
S.
,
Khosla
,
S.
,
Fisher Yu
,
A.
,
Zhang
,
L.
,
Tang
,
X.
, and
Xiao
,
J.
,
2015
, “
3D ShapeNets: A Deep Representation for Volumetric Shapes
,”
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Boston, MA
,
June 7–12
, IEEE, pp.
1912
1920
.
6.
Fitzgerald
,
K.
,
1987
, “
Compressing the Design Cycle: CAD and CAE Are Crucial Competitive Tools, But Honing Them to Maximum Effectiveness Is Slow Work
,”
IEEE Spectr.
,
24
(
10
), pp.
39
42
.
7.
Halverson
,
E. R.
, and
Sheridan
,
K. M.
,
2014
, “
The Maker Movement in Education
,”
Harv. Educ. Rev.
,
84
(
4
), pp.
495
504
.
8.
Xiao
,
W.
,
Zheng
,
L.
,
Huan
,
J.
, and
Lei
,
P.
,
2015
, “
A Complete CAD/CAM/CNC Solution for STEP-Compliant Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
31
(
1
), pp.
1
10
.
9.
Xu
,
X. W.
, and
He
,
Q.
,
2004
, “
Striving for a Total Integration of CAD, CAPP, CAM and CNC
,”
Rob. Comput. Integr. Manuf.
,
20
(
2
), pp.
101
109
.
10.
Mourtzis
,
D.
,
Fotia
,
S.
,
Boli
,
N.
, and
Vlachou
,
E.
,
2019
, “
Modelling and Quantification of Industry 4.0 Manufacturing Complexity Based on Information Theory: A Robotics Case Study
,”
Int. J. Prod. Res.
,
57
(
22
), pp.
6908
6921
.
11.
Chen
,
B.
,
Wan
,
J.
,
Shu
,
L.
,
Li
,
P.
,
Mukherjee
,
M.
, and
Yin
,
B.
,
2017
, “
Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges
,”
IEEE Access
,
6
, pp.
6505
6519
.
12.
Osterrieder
,
P.
,
Budde
,
L.
, and
Friedli
,
T.
,
2020
, “
The Smart Factory As a Key Construct of Industry 4.0: A Systematic Literature Review
,”
Int. J. Prod. Econ.
,
221
, p.
107476
.
13.
Allison
,
J. T.
,
Cardin
,
M. A.
,
McComb
,
C.
,
Ren
,
M. Y.
,
Selva
,
D.
,
Tucker
,
C.
,
Witherell
,
P.
, and
Zhao
,
Y. F.
,
2022
, “
Special Issue: Artificial Intelligence and Engineering Design
,”
ASME J. Mech. Des.
,
144
(
2
), p.
020301
.
14.
Chan
,
S. L.
,
Lu
,
Y.
, and
Wang
,
Y.
,
2018
, “
Data-Driven Cost Estimation for Additive Manufacturing in Cybermanufacturing
,”
J. Manuf. Syst.
,
46
, pp.
115
126
.
15.
Razvi
,
S. S.
,
Feng
,
S.
,
Narayanan
,
A.
,
Lee
,
Y.-T. T.
, and
Witherell
,
P.
,
2019
, “
A Review of Machine Learning Applications in Additive Manufacturing
,”
39th Computers and Information in Engineering Conference Vol. 1.
,
Anaheim, CA
,
Aug. 18–21
.
16.
Heiden
,
B.
,
Alieksieiev
,
V.
,
Volk
,
M.
, and
Tonino-Heiden
,
B.
,
2021
, “
Framing Artificial Intelligence (AI) Additive Manufacturing (AM)
,”
Procedia Comput. Sci.
,
186
, pp.
387
394
.
17.
Jiang
,
J.
,
Xiong
,
Y.
,
Zhang
,
Z.
, and
Rosen
,
D. W.
,
2022
, “
Machine Learning Integrated Design for Additive Manufacturing
,”
J. Intell. Manuf.
,
33
(
4
), pp.
1073
1086
.
18.
Moosavi
,
S. M.
,
Jablonka
,
K. M.
, and
Smit
,
B.
,
2020
, “
The Role of Machine Learning in the Understanding and Design of Materials
,”
J. Am. Chem. Soc.
,
142
(
48
), pp.
20273
20287
.
19.
Fuge
,
M.
,
Peters
,
B.
, and
Agogino
,
A.
,
2014
, “
Machine Learning Algorithms for Recommending Design Methods
,”
ASME J. Mech. Des.
,
136
(
10
), p.
101103
.
20.
Wang
,
P.
,
Peng
,
D.
,
Li
,
L.
,
Chen
,
L.
,
Wu
,
C.
,
Wang
,
X.
,
Childs
,
P.
, and
Guo
,
Y.
,
2019
, “
Human-in-the-Loop Design With Machine Learning
,”
Proc. Des. Soc. Int. Conf. Eng. Des.
,
1
(
1
), pp.
2577
2586
.
21.
Deng
,
J.
,
Dong
,
W.
,
Socher
,
R.
,
Li
,
L.-J.
,
Li
,
K.
, and
Fei-Fei
,
L.
,
2010
, “
ImageNet: A Large-Scale Hierarchical Image Database
,”
2009 IEEE Conference on Computer Vision and Pattern Recognition
,
Miami, FL
,
June 20–25
, IEEE, pp.
248
255
.
22.
Amidi
,
A.
,
Amidi
,
S.
,
Vlachakis
,
D.
,
Megalooikonomou
,
V.
,
Paragios
,
N.
, and
Zacharaki
,
E. I.
,
2018
, “
EnzyNet: Enzyme Classification Using 3D Convolutional Neural Networks on Spatial Representation
,”
PeerJ
,
6
, p.
e4750
.
23.
Cho
,
J.
,
Lee
,
K.
,
Shin
,
E.
,
Choy
,
G.
, and
Do
,
S.
,
2015
, “
How Much Data Is Needed to Train a Medical Image Deep Learning System to Achieve Necessary High Accuracy?
arXiv
,
1
. https://arxiv.org/abs/1511.06348
24.
Kotsiantis
,
S. B.
,
Zaharakis
,
I.D.
, and
Pintelas
,
P.E.
,
2006
, “
Machine Learning: a Review of Classification and Combining Techniques
,”
Artif Intell Rev
,
26
, pp.
159
190
.
25.
Pan
,
S. J.
, and
Yang
,
Q.
,
2010
, “
A Survey on Transfer Learning
,”
IEEE Trans. Knowl. Data Eng.
,
22
(
10
), pp.
1345
1359
.
26.
Schmidhuber
,
J.
,
2015
, “
Deep Learning in Neural Networks: An Overview
,”
Neural Networks
,
61
, pp.
85
117
.
27.
Jain
,
A. K.
,
Mao
,
J.
, and
Mohiuddin
,
K. M.
,
1996
, “
Artificial Neural Networks: A Tutorial
,”
Computer
,
29
(
3
), pp.
31
44
.
28.
Lee
,
C.
, and
Lim
,
C.
,
2021
, “
From Technological Development to Social Advance: A Review of Industry 4.0 Through Machine Learning
,”
Technol. Forecast. Soc. Change
,
167
, p.
120653
.
29.
Ansari
,
F.
,
Erol
,
S.
, and
Sihn
,
W.
,
2018
, “
Rethinking Human-Machine Learning in Industry 4.0: How Does the Paradigm Shift Treat the Role of Human Learning?
Procedia Manuf.
,
23
, pp.
117
122
.
30.
Angelopoulos
,
A.
,
Michailidis
,
E. T.
,
Nomikos
,
N.
,
Trakadas
,
P.
,
Hatziefremidis
,
A.
,
Voliotis
,
S.
, and
Zahariadis
,
T.
,
2020
, “
Tackling Faults in the Industry 4.0 Era—A Survey of Machine-Learning Solutions and Key Aspects
,”
Sensors
,
20
(
1
), pp.
1
34
.
31.
Brik
,
B.
,
Bettayeb
,
B.
,
Sahnoun
,
M.
, and
Duval
,
F.
,
2019
, “
Towards Predicting System Disruption in Industry 4.0: Machine Learning-Based Approach
,”
Procedia Comput. Sci.
,
151
, pp.
667
674
.
32.
Qi
,
C. R.
,
Su
,
H.
,
Mo
,
K.
, and
Guibas
,
L. J.
,
2017
, “
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp.
652
660
.
33.
Muzahid
,
A. A. M.
,
Wan
,
W.
,
Sohel
,
F.
,
Khan
,
N. U.
,
Villagomez
,
O. D. C.
, and
Ullah
,
H.
,
2020
, “
3D Object Classification Using a Volumetric Deep Neural Network: An Efficient Octree Guided Auxiliary Learning Approach
,”
IEEE Access
,
XX
(
3
), pp.
1
1
.
34.
Sedaghat
,
N.
,
Zolfaghari
,
M.
,
Amiri
,
E.
, and
Brox
,
T.
,
2016
, “
Orientation-Boosted Voxel Nets for 3D Object Recognition
,”
arXiv
,
1
, pp.
1
18
. https://arxiv.org/abs/1604.03351
35.
Ahmed
,
J.
,
Vesal
,
S.
,
Durlak
,
F.
,
Kaergel
,
R.
,
Ravikumar
,
N.
,
Rémy-Jardin
,
M.
, and
Maier
,
A.
,
2020
, “
COPD Classification in CT Images Using a 3D Convolutional Neural Network
,”
Bildverarbeitung für die Medizin
,
1
, pp.
39
45
.
36.
Assfalg
,
J.
,
Borgwardt
,
K. M.
, and
Kriegel
,
H.-P.
,
2006
, “
3DString: A Feature String Kernel for 3D Object Classification on Voxelized Data
,”
Proceedings of the 15th ACM International Conference on Information and Knowledge Management
,
Arlington, VA
,
Nov. 11
, pp.
198
207
.
37.
Pal
,
N. R.
, and
Pal
,
S. K.
,
1993
, “
A Review on Image Segmentation Techniques
,”
Pattern Recognit.
,
26
(
9
), pp.
1277
1294
.
38.
Egmont-Petersen
,
M.
,
de Ridder
,
D.
, and
Handels
,
H.
,
2002
, “
Image Processing With Neural Networks—A Review
,”
Pattern Recognit.
,
35
(
10
), pp.
2279
2301
.
39.
Xie
,
W.
,
Noble
,
J. A.
, and
Zisserman
,
A.
,
2018
, “
Microscopy Cell Counting and Detection With Fully Convolutional Regression Networks
,”
Comput. Methods Biomech. Biomed. Eng. Imaging Vis.
,
6
(
3
), pp.
283
292
.
40.
Vosselman
,
G.
,
Gorte
,
B. G. H.
,
Sithole
,
G.
, and
Rabbani
,
T.
,
2004
, “
Recognising Structure in Laser Scanner Point Clouds
,”
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
,
46
(
8
), pp.
33
38
.
41.
Aldoj
,
N.
,
Lukas
,
S.
,
Dewey
,
M.
, and
Penzkofer
,
T.
,
2020
, “
Semi-automatic Classification of Prostate Cancer on Multi-parametric MR Imaging Using a Multi-channel 3D Convolutional Neural Network
,”
Eur. Radiol.
,
30
(
2
), pp.
1243
1253
.
42.
Bae
,
H. J.
,
Hyun
,
H.
,
Byeon
,
Y.
,
Shin
,
K.
,
Cho
,
Y.
,
Song
,
Y. J.
,
Yi
,
S.
,
Kuh
,
S. U.
,
Yeom
,
J. S.
, and
Kim
,
N.
,
2020
, “
Fully Automated 3D Segmentation and Separation of Multiple Cervical Vertebrae in CT Images Using a 2D Convolutional Neural Network
,”
Comput. Methods Programs Biomed.
,
184
, p.
184
.
43.
Kleesiek
,
J.
,
Urban
,
G.
,
Hubert
,
A.
,
Schwarz
,
D.
,
Maier-Hein
,
K.
,
Bendszus
,
M.
, and
Biller
,
A.
,
2016
, “
Deep MRI Brain Extraction: A 3D Convolutional Neural Network for Skull Stripping
,”
Neuroimage
,
129
, pp.
460
469
.
44.
Guay
,
M.
,
Emam
,
Z.
,
Anderson
,
A.
, and
Aronova
,
M.
,
2021
, “
Dense cellular segmentation for EM using 2D–3D neural network ensembles
,”
Scientific Reports
,
11
.
45.
Du Plessis
,
A.
,
Le Roux
,
S. G.
,
Els
,
J.
,
Booysen
,
G.
, and
Blaine
,
D. C.
,
2015
, “
Application of MicroCT to the Non-destructive Testing of an Additive Manufactured Titanium Component
,”
Case Stud. Nondestruct. Test. Eval.
,
4
, pp.
1
7
.
46.
Everton
,
S. K.
,
Hirsch
,
M.
,
Stavroulakis
,
P. I.
,
Leach
,
R. K.
, and
Clare
,
A. T.
,
2016
, “
Review of In-Situ Process Monitoring and In-Situ Metrology for Metal Additive Manufacturing
,”
Mater. Des.
,
95
, pp.
431
445
.
47.
Yang
,
J.
,
Chen
,
Y.
,
Huang
,
W.
, and
Li
,
Y.
,
2017
, “
Survey on Artificial Intelligence for Additive Manufacturing
,”
ICAC 2017—2017 23rd IEEE International Conference on Autonomic Computing Addressing Global Challenges Through Automation and Computing
,
Columbus, OH
,
July 17–21
, pp.
7
8
.
48.
Cui
,
W.
,
Zhang
,
Y.
,
Zhang
,
X.
,
Li
,
L.
, and
Liou
,
F.
,
2020
, “
Metal Additive Manufacturing Parts Inspection Using Convolutional Neural Network
,”
Appl. Sci.
,
10
(
2
), p.
545
.
49.
Rao
,
P. K.
,
Liu
,
J.
,
Roberson
,
D.
,
Kong
,
Z.
, and
Williams
,
C.
,
2015
, “
Online Real-Time Quality Monitoring in Additive Manufacturing Processes Using Heterogeneous Sensors
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061007
.
50.
Rao
,
P. K.
, and
Roberson
,
D.
,
2016
, “
Sensor-Based Online Process Fault Detection in Additive Manufacturing
,”
International Manufacturing Science and Engineering Conference
,
Blacksburg, VA
,
June 27–July 1
, pp.
1
13
.
51.
Prakash
,
A.
,
Mahan
,
S. K.
,
Williams
,
T.
,
McComb
,
G.
,
Menold
,
C.
,
and Tucker
,
J.
, and
S
,
C.
,
2020
, “
Detection of System Compromise in Additive Manufacturing Using Video Motion Magnification
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031109
.
52.
Pierce
,
J.
,
Williams
,
G.
,
Simpson
,
T.
,
Meisel
,
N.
, and
McComb
,
C.
,
2021
, “
Stochastically-Trained Physics-Informed Neural Networks: Application to Thermal Analysis in Metal Laser Powder Bed Fusion
,”
International Design Engineering Technical Conferences.
,
Online, Virtual
,
Aug. 17–19
.
53.
Shamsaei
,
N.
,
Yadollahi
,
A.
,
Bian
,
L.
, and
Thompson
,
S. M.
,
2015
, “
An Overview of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical Behavior, Process Parameter Optimization and Control
,”
Addit. Manuf.
,
8
, pp.
12
35
.
54.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
, and
Li
,
H.
,
2015
, “
Wire-Feed Additive Manufacturing of Metal Components: Technologies, Developments and Future Interests
,”
Int. J. Adv. Manuf. Technol.
,
81
(
1–4
), pp.
465
481
.
55.
Zhang
,
P. F.
,
Churi
,
N. J.
,
Pei
,
Z. J.
, and
Treadwell
,
C.
,
2008
, “
Mechanical Drilling Processes for Titanium Alloys: A Literature Review
,”
Mach. Sci. Technol.
,
12
(
4
), pp.
417
444
.
56.
Che
,
D.
,
Saxena
,
I.
,
Han
,
P.
,
Guo
,
P.
, and
Ehmann
,
K. F.
,
2014
, “
Machining of Carbon Fiber Reinforced Plastics/Polymers: A Literature Review
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
034001
.
57.
Chatham
,
C. A.
,
Long
,
T. E.
, and
Williams
,
C. B.
,
2019
, “
A Review of the Process Physics and Material Screening Methods for Polymer Powder Bed Fusion Additive Manufacturing
,”
Prog. Polym. Sci.
,
93
, pp.
68
95
.
58.
Wang
,
S.
,
Wan
,
J.
,
Li
,
D.
, and
Zhang
,
C.
,
2016
, “
Implementing Smart Factory of Industrie 4.0: An Outlook
,”
Int. J. Distrib. Sens. Netw.
,
12
(
1
), p.
3159805
.
59.
Shi
,
Z.
,
Xie
,
Y.
,
Xue
,
W.
,
Chen
,
Y.
,
Fu
,
L.
, and
Xu
,
X.
,
2020
, “
Smart Factory in Industry 4.0
,”
Syst. Res. Behav. Sci.
,
37
(
4
), pp.
607
617
.
60.
Park
,
S. T.
,
Li
,
G.
, and
Hong
,
J. C.
,
2020
, “
A Study on Smart Factory-Based Ambient Intelligence Context-Aware Intrusion Detection System Using Machine Learning
,”
J. Ambient Intell. Humaniz. Comput.
,
11
(
4
), pp.
1405
1412
.
61.
Shiue
,
Y. R.
,
Lee
,
K. C.
, and
Su
,
C. T.
,
2018
, “
Real-Time Scheduling for a Smart Factory Using a Reinforcement Learning Approach
,”
Comput. Ind. Eng.
,
125
(
101
), pp.
604
614
.
62.
Horick
,
C.
,
2020
, “
Industry 4.0 Production Networks: Cyber–Physical System-Based Smart Factories, Real-Time Big Data Analytics, and Sustainable Product Lifecycle Management
,”
J. Self-Governance Manage. Econ.
,
8
(
1
), pp.
107
113
.
63.
Tribelsky
,
E.
, and
Sacks
,
R.
,
2010
, “
Measuring Information Flow in the Detailed Design of Construction Projects
,”
Res. Eng. Des.
,
21
(
3
), pp.
189
206
.
64.
Van Lente
,
H.
,
Spitters
,
C.
, and
Peine
,
A.
,
2013
, “
Comparing Technological Hype Cycles: Towards a Theory
,”
Technol. Forecast. Soc. Change
,
80
(
8
), pp.
1615
1628
.
65.
Torpay
,
E.
,
2022
, “
Engineers: Employment, Pay, and Outlook
,” U.S. Bureau of Labor Statistics.
66.
Coff
,
R. W.
,
Coff
,
D. C.
, and
Eastvold
,
R.
,
2006
, “
The Knowledge-Leveraging Paradox: How to Achieve Scale Without Making Knowledge Imitable
,”
Acad. Manag. Rev.
,
31
(
2
), pp.
452
465
.
67.
Wazny
,
K.
,
2017
, “
‘Crowdsourcing’ Ten Years in: A Review
,”
J. Glob. Health
,
7
(
2
), pp.
1
13
.
68.
Xintong
,
G.
,
Hongzhi
,
W.
,
Song
,
Y.
, and
Hong
,
G.
,
2014
, “
Brief Survey of Crowdsourcing for Data Mining
,”
Expert Syst. Appl.
,
41
(
17
), pp.
7987
7994
.
69.
Chai
,
C.
,
Fan
,
J.
,
Li
,
G.
,
Wang
,
J.
, and
Zheng
,
Y.
,
2019
, “
Crowdsourcing Database Systems: Overview and Challenges
,”
IEEE 35th International Conference on Data Engineering
,
April
, pp.
2052
2055
.
70.
Valerdi
,
R.
, and
Davidz
,
H. L.
,
2009
, “
Empirical Research in Systems Engineering: Challenges and Opportunities of a New Frontier
,”
Syst. Eng.
,
12
(
2
), pp.
169
181
.
71.
Wu
,
X.
,
Chen
,
H.
,
Wu
,
G.
,
Liu
,
J.
,
Zheng
,
Q.
,
He
,
X.
,
Zhou
,
A.
, et al
,
2015
, “
Knowledge Engineering With Big Data
,”
IEEE Intell. Syst.
,
30
(
5
), pp.
46
55
.
72.
Pereira
,
T.
,
Kennedy
,
J. V.
, and
Potgieter
,
J.
,
2019
, “
A Comparison of Traditional Manufacturing Vs Additive Manufacturing, the Best Method for the Job
,”
Procedia Manuf.
,
30
, pp.
11
18
.
73.
Abadi
,
M.
,
Paul
,
B.
,
Chen
,
J.
,
Chen
,
Z.
,
Davis
,
A.
,
Dean
,
J.
,
Devin
,
M.
, et al
,
2016
, “
TensorFlow: A System for Large-Scale Machine Learning
,”
12th USENIX Symposium on Operating. Systems Design and Implementation (OSDI ‘16)
,
Savannah, GA
,
Nov. 2–4
, pp.
265
283
.
74.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
, et al
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.
75.
Maier
,
T.
,
DeFranco
,
J.
, and
Mccomb
,
C.
,
2019
, “
An Analysis of Design Process and Performance in Distributed Data Science Teams
,”
Team Perform. Manage. An Int. J.
,
25
(
7/8
), pp.
419
439
.
76.
Valle
,
S.
, and
Vázquez-Bustelo
,
D.
,
2009
, “
Concurrent Engineering Performance: Incremental Versus Radical Innovation
,”
Int. J. Prod. Econ.
,
119
(
1
), pp.
136
148
.
77.
Bohm
,
M. R.
, and
Stone
,
R. B.
,
2004
, “
Product Design Support: Exploring a Design Repository System
,”
ASME International Mechanical Engineering Congress and Exposition
,
Anaheim, CA
,
Nov. 13–19
, pp.
55
65
.
78.
Bespalov
,
D.
,
Ip
,
C. Y.
,
Regli
,
W. C.
, and
Shaffer
,
J.
,
2005
, “
Benchmarking CAD Search Techniques
,”
Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling
,
Cambridge, MA
,
June 13–15
, Vol. 1, No. 212, pp.
275
286
.
79.
Bohm
,
M. R.
,
Vucovich
,
J. P.
, and
Stone
,
R. B.
,
2008
, “
Using a Design Repository to Drive Concept Generation
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
1
), p.
014502
.
80.
Robertson
,
B. F.
, and
Radcliffe
,
D. F.
,
2009
, “
Impact of CAD Tools on Creative Problem Solving in Engineering Design
,”
CAD Comput. Aided Des.
,
41
(
3
), pp.
136
146
.
You do not currently have access to this content.