Abstract

The study of intelligent operation and maintenance methods for turbofan engines is of great importance for improving the reliability of turbofan engines. Given the harsh operating conditions and complex structure of the turbofan engine, it is extremely difficult to establish an accurate physical model for remaining useful life (RUL) prediction. The traditional operation and maintenance method based on the physical model has several limitations in the application of turbofan engines, while the data-driven method offers a new solution. Compared with traditional machine learning models, deep learning models possess more powerful nonlinear expression capabilities and feature extraction capabilities. Therefore, this study focuses on studying the RUL prediction algorithm for turbofan engines based on the fused deep learning models. In this article, a multimodal deep learning approach based on a 1DCNN (1D convolutional neural network) + attention enhanced Bi-LSTM (bidirectional long short-term memory) network is proposed to predict the RUL by mining the temporal information of data. Furthermore, a DDResNet (dilated deep residual network) is also introduced to the 1DCNN submodel to leverage its hidden pattern mining capability due to its advance in preventing performance degradation across layers. Subsequently, the output of these two submodels is weighted fused to obtain the final RUL prediction. The merits of the proposed method are demonstrated by comparing it with existing methods for RUL prediction using the C-MAPSS (commercial modular aero-propulsion system simulation) dataset.

References

1.
Peng
,
C.
,
Chen
,
Y.
,
Chen
,
Q.
,
Tang
,
Z.
,
Li
,
L.
, and
Gui
,
W.
,
2021
, “
A Remaining Useful Life Prognosis of Turbofan Engine Using Temporal and Spatial Feature Fusion
,”
Sensors
,
21
(
2
), p.
418
.
2.
Zhao
,
H.
,
Liu
,
H.
,
Jin
,
Y.
,
Dang
,
X.
, and
Deng
,
W.
,
2021
, “
Feature Extraction for Data-Driven Remaining Useful Life Prediction of Rolling Bearings
,”
IEEE Trans. Instrum. Meas.
,
70
, pp.
1
10
.
3.
Chen
,
C.
,
Liu
,
Y.
,
Sun
,
X.
,
Di Cairano-Gilfedder
,
C.
, and
Titmus
,
S.
,
2021
, “
An Integrated Deep Learning-Based Approach for Automobile Maintenance Prediction With GIS Data
,”
Reliab. Eng. Syst. Saf.
,
216
, p.
107919
.
4.
Orsagh
,
R. F.
,
Sheldon
,
J.
, and
Klenke
,
C. J.
,
2003
, “
Prognostics/Diagnostics for Gas Turbine Engine Bearings
,”
2003 IEEE Aerospace Conference Proceedings
,
Big Sky, MT
,
Mar. 8–15
, Vol. 1–8, pp.
3095
3103
.
5.
Zuo
,
F.-J.
,
Huang
,
H.-Z.
,
Zhu
,
S.-P.
,
Lv
,
Z.
, and
Gao
,
H.
,
2015
, “
Fatigue Life Prediction Under Variable Amplitude Loading Using a Non-Linear Damage Accumulation Model
,”
Int. J. Damage Mech.
,
24
(
5
), pp.
767
784
.
6.
Zhang
,
Y.
,
Yang
,
Y.
,
Li
,
H.
,
Xiu
,
X.
, and
Liu
,
W.
,
2021
, “
A Data-Driven Modeling Method for Stochastic Nonlinear Degradation Process With Application to RUL Estimation
,”
IEEE Trans. Syst. Man Cybern.: Syst.
, pp.
1
12
.
7.
Liu
,
Y.-C.
,
Chang
,
Y.-J.
,
Liu
,
S.-L.
, and
Chen
,
S.-P.
,
2019
, “
Data-Driven Prognostics of Remaining Useful Life for Milling Machine Cutting Tools
,”
2019 IEEE International Conference on Prognostics and Health Management (ICPHM).
,
San Francisco, CA
,
June 17–20
.
8.
Zheng
,
S.
,
Ristovski
,
K.
,
Farahat
,
A.
, and
Gupta
,
C.
,
2017
, “
Long Short-Term Memory Network for Remaining Useful Life Estimation
,”
2017 IEEE International Conference on Prognostics and Health Management (ICPHM)
,
Dallas, TX
,
June 19–21
, pp.
88
95
.
9.
Guo
,
L.
,
Li
,
N.
,
Jia
,
F.
,
Lei
,
Y.
, and
Lin
,
J.
,
2017
, “
A Recurrent Neural Network Based Health Indicator for Remaining Useful Life Prediction of Bearings
,”
Neurocomputing
,
240
, pp.
98
109
.
10.
Singh
,
S. K.
,
Kumar
,
S.
, and
Dwivedi
,
J. P.
,
2019
, “
A Novel Soft Computing Method for Engine RUL Prediction
,”
Multimed. Tools Appl.
,
78
(
4
), pp.
4065
4087
.
11.
An
,
Q.
,
Tao
,
Z.
,
Xu
,
X.
,
El Mansori
,
M.
, and
Chen
,
M.
,
2020
, “
A Data-Driven Model for Milling Tool Remaining Useful Life Prediction With Convolutional and Stacked LSTM Network
,”
Measurement
,
154
, p.
107461
.
12.
Li
,
X.
,
Mba
,
D.
,
Lin
,
T.
,
Yang
,
Y.
, and
Loukopoulos
,
P.
,
2021
, “
Just-in-Time Learning Based Probabilistic Gradient Boosting Tree for Valve Failure Prognostics
,”
Mech. Syst. Signal Process.
,
150
.
13.
Yu
,
W.
,
Kim
,
I. Y.
, and
Mechefske
,
C.
,
2020
, “
An Improved Similarity-Based Prognostic Algorithm for RUL Estimation Using an RNN Autoencoder Scheme
,”
Reliab. Eng. Syst. Saf.
,
199
, p.
106926
.
14.
Deng
,
Y.
,
Di Bucchianico
,
A.
, and
Pechenizkiy
,
M.
,
2020
, “
Controlling the Accuracy and Uncertainty Trade-Off in RUL Prediction With a Surrogate Wiener Propagation Model
,”
Reliab. Eng. Syst. Saf.
,
196
, p.
106727
.
15.
Xu
,
X.
,
Wu
,
Q.
,
Li
,
X.
, and
Huang
,
B.
,
2020
, “
Dilated Convolution Neural Network for Remaining Useful Life Prediction
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021004
.
16.
Liu
,
H.
,
Liu
,
Z.
,
Jia
,
W.
, and
Lin
,
X.
,
2021
, “
Remaining Useful Life Prediction Using a Novel Feature-Attention-Based End-to-End Approach
,”
IEEE Trans. Ind. Inf.
,
17
(
2
), pp.
1197
1207
.
17.
Li
,
X.
,
Ding
,
Q.
, and
Sun
,
J.-Q.
,
2018
, “
Remaining Useful Life Estimation in Prognostics Using Deep Convolution Neural Networks
,”
Reliab. Eng. Syst. Saf.
,
172
, pp.
1
11
.
18.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Las Vegas, NV
,
June 27–30
, pp.
770
778
.
19.
Goodfellow
,
I. J.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Nets
,”
Adv. Neural Inf. Process. Syst.
,
27
, pp.
2672
2680
.
20.
Saxena
,
A.
,
Goebel
,
K.
,
Simon
,
D.
, and
Eklund
,
N.
,
2008
, “
Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation
,”
2008 IEEE International Conference on Prognostics and Health Management (ICPHM)
,
Denver, CO
,
Oct. 6–9
, pp.
1
9
.
21.
Ya
,
S.
,
Tangbin
,
X.
,
Yu
,
Z.
,
Pengcheng
,
Z.
, and
Ershun
,
P.
,
2019
, “
Remaining Useful Life Prediction of Turbofan Engine Based on Autoencoder-BLSTM
,”
Comput. Integr. Manuf. Syst.
,
25
(
7
), pp.
1611
1619
.
22.
Sateesh Babu
,
G.
,
Zhao
,
P.
, and
Li
,
X.-L.
,
2016
, “
Deep Convolutional Neural Network Based Regression Approach for Estimation of Remaining Useful Life
,”
International Conference on Database Systems for Advanced Applications
,
Dallas, TX
,
Apr. 14–16
, pp.
214
228
.
23.
Garcia Nieto
,
P. J.
,
Garcia-Gonzalo
,
E.
,
Sanchez Lasheras
,
F.
, and
de Cos Juez
,
F. J.
,
2015
, “
Hybrid PSO-SVM-Based Method for Forecasting of the Remaining Useful Life for Aircraft Engines and Evaluation of Its Reliability
,”
Reliab. Eng. Syst. Saf.
,
138
, pp.
219
231
.
24.
Zhang
,
C.
,
Lim
,
P.
,
Qin
,
A. K.
, and
Tan
,
K. C.
,
2017
, “
Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
28
(
10
), pp.
2306
2318
.
25.
Ellefsen
,
A. L.
,
Bjorlykhaug
,
E.
,
Aesoy
,
V.
,
Ushakov
,
S.
, and
Zhang
,
H.
,
2019
, “
Remaining Useful Life Predictions for Turbofan Engine Degradation Using Semi-Supervised Deep Architecture
,”
Reliab. Eng. Syst. Saf.
,
183
, pp.
240
251
.
You do not currently have access to this content.