Spatial variation of material structures is a principal mechanism for creating and controlling spatially varying material properties in nature and engineering. While the spatially varying homogenized properties can be represented by scalar and vector fields on the macroscopic scale, explicit microscopic structures of constituent phases are required to facilitate the visualization, analysis, and manufacturing of functionally graded material (FGM). The challenge of FGM structure modeling lies in the integration of these two scales. We propose to represent and control material properties of FGM at macroscale using the notion of material descriptors, which include common geometric, statistical, and topological measures, such as volume fraction, correlation functions, and Minkowski functionals. At microscale, the material structures are modeled as Markov random fields (MRFs): we formulate the problem of design and (re)construction of FGM structure as a process of selecting neighborhoods from a reference FGM, based on target material descriptors fields. The effectiveness of the proposed method in generating a spatially varying structure of FGM with target properties is demonstrated by two examples: design of a graded bone structure and generating functionally graded lattice structures with target volume fraction fields.

References

1.
Birman
,
V.
, and
Byrd
,
L. W.
,
2007
, “
Modeling and Analysis of Functionally Graded Materials and Structures
,”
ASME Appl. Mech. Rev.
,
60
(
5
), p.
195
.
2.
Mahamood
,
R. M.
,
Member
,
E. T. A.
,
Shukla
,
M.
, and
Pityana
,
S.
,
2012
, “
Functionally Graded Material: An Overview
,”
World Congress on Engineering
, London, UK, July 4–6, Vol.
III
, pp.
2
6
.
3.
Ivar
,
E.
,
2004
, “
Functionally Graded Materials
,”
Handbook of Advanced Materials
,
K. W.
James
, ed., pp.
465
486
.
4.
Zisis
,
T.
,
Kordolemis
,
A.
, and
Giannakopoulos
,
A. E.
,
2010
, “
Development of Strong Surfaces Using Functionally Graded Composites Inspired by Natural Teeth—Finite Element and Experimental Verification
,”
ASME J. Eng. Mater. Technol.
,
132
(
1
), p.
011010
.
5.
Mehboob
,
H.
, and
Chang
,
S.-H.
,
2015
, “
Optimal Design of a Functionally Graded Biodegradable Composite Bone Plate by Using the Taguchi Method and Finite Element Analysis
,”
Compos. Struct.
,
119
, pp.
166
173
.
6.
Thamaraiselvi
,
T. V.
, and
Rajeswari
,
S.
,
2004
, “
Biological Evaluation of Bioceramic Materials: A Review
,”
Trends Biomater. Artif. Organs
,
18
(
1
), pp.
9
17
.
7.
Biswas
,
A.
,
Shapiro
,
V.
, and
Tsukanov
,
I.
,
2004
, “
Heterogeneous Material Modeling With Distance Fields
,”
Comput. Aided Geom. Des.
,
21
(
3
), pp.
215
242
.
8.
Jaworska
,
L.
,
Rozmus
,
M.
,
Królicka
,
B.
, and
Twardowska
,
A.
,
2006
, “
Functionally Graded Cermets
,”
J. Achiev. Mater. Manuf. Eng.
,
17
(
1–2
), pp. 73–76.
9.
Silva
,
E. C. N.
,
Walters
,
M. C.
, and
Paulino
,
G. H.
,
2006
, “
Modeling Bamboo as a Functionally Graded Material: Lessons for the Analysis of Affordable Materials
,”
J. Mater. Sci.
,
41
(
21
), pp.
6991
7004
.
10.
Nogata
,
F.
, and
Takahashi
,
H.
,
1995
, “
Intelligent Functionally Graded Material: Bamboo
,”
Compos. Eng.
,
5
(
7
), pp.
743
751
.
11.
Park
,
S.-M.
,
Crawford
,
R. H.
, and
Beaman
,
J. J.
,
2001
, “
Volumetric Multi-Texturing for Functionally Gradient Material Representation
,”
Sixth ACM Symposium on Solid Modeling and Applications
(
SMA
), Ann Arbor, MI, June 4–8, pp.
216
224
.
12.
Siu
,
Y. K.
, and
Tan
,
S. T.
,
2002
, “
‘Source-Based’ Heterogeneous Solid Modeling
,”
Comput.-Aided Des.
,
34
(
1
), pp.
41
55
.
13.
Oxman
,
N.
,
Keating
,
S.
, and
Tsai
,
E.
,
2011
, “
Functionally Graded Rapid Prototyping
,”
Innovative Developments in Virtual and Physical Prototyping
,
CRC Press
,
Boca Raton, FL
, pp.
483
489
.
14.
Vidimče
,
K.
,
Wang
,
S.-P.
,
Ragan-Kelley
,
J.
, and
Matusik
,
W.
,
2013
, “
OpenFab
,”
ACM Trans. Graphics
,
32
(
4
), p.
1
.
15.
Doubrovski
,
E.
,
Tsai
,
E.
,
Dikovsky
,
D.
,
Geraedts
,
J.
,
Herr
,
H.
, and
Oxman
,
N.
,
2014
, “
Voxel-Based Fabrication Through Material Property Mapping: A Design Method for Bitmap Printing
,”
Comput.-Aided Des.
,
60
, pp.
3
13
.
16.
Seepersad
,
C. C.
,
Allen
,
J. K.
,
McDowell
,
D. L.
, and
Mistree
,
F.
,
2006
, “
Robust Design of Cellular Materials With Topological and Dimensional Imperfections
,”
ASME J. Mech. Des.
,
128
(
6
), p.
1285
.
17.
Corney
,
J.
, and
Torres-Sanchez
,
C.
,
2008
, “
Toward Functionally Graded Cellular Microstructures
,”
ASME J. Mech. Des.
,
131
(9), p. 091011.
18.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
, Cambridge, UK.
19.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials
,”
J. Mech. Phys. Solids
,
11
(
2
), pp.
127
140
.
20.
Moulinec
,
H.
, and
Suquet
,
P.
,
1998
, “
A Numerical Method for Computing the Overall Response of Nonlinear Composites With Complex Microstructure
,”
Comput. Methods Appl. Mech. Eng.
,
157
(
1–2
), pp.
69
94
.
21.
Liu
,
X.
, and
Shapiro
,
V.
,
2016
, “
Homogenization of Material Properties in Additively Manufactured Structures
,”
Comput.-Aided Des.
,
78
, pp.
71
82
.
22.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9–10
), pp.
635
654
.
23.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
24.
Sigmund
,
O.
,
1994
, “
Materials With Prescribed Constitutive Parameters: An Inverse Homogenization Problem
,”
Int. J. Solids Struct.
,
31
(
17
), pp.
2313
2329
.
25.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1982
, “
The Mechanics of Three-Dimensional Cellular Materials
,”
Proc. R. Soc. A
,
382
(
1782
), pp.
43
59
.
26.
Liu
,
X.
, and
Shapiro
,
V.
,
2015
, “
Random Heterogeneous Materials Via Texture Synthesis
,”
Comput. Mater. Sci.
,
99
, pp.
177
189
.
27.
Liu
,
H.
,
Maekawa
,
T.
,
Patrikalakis
,
N. M.
,
Sachs
,
E. M.
, and
Cho
,
W.
,
2004
, “
Methods for Feature-Based Design of Heterogeneous Solids
,”
Comput.-Aided Des.
,
36
(
12
), pp.
1141
1159
.
28.
Huang
,
J.
,
Fadel
,
G. M.
,
Blouin
,
V. Y.
, and
Grujicic
,
M.
,
2002
, “
Bi-Objective Optimization Design of Functionally Gradient Materials
,”
Mater. Des.
,
23
(
7
), pp.
657
666
.
29.
Pasko
,
A.
,
Adzhiev
,
V.
,
Schmitt
,
B.
, and
Schlick
,
C.
,
2001
, “
Constructive Hypervolume Modeling
,”
Graphical Models
,
63
(
6
), pp.
413
442
.
30.
Qian
,
X.
, and
Dutta
,
D.
,
2003
, “
Design of Heterogeneous Turbine Blade
,”
Comput.-Aided Des.
,
35
(
3
), pp.
319
329
.
31.
Kou
,
X.
, and
Tan
,
S.
,
2007
, “
Heterogeneous Object Modeling: A Review
,”
Comput.-Aided Des.
,
39
(
4
), pp.
284
301
.
32.
Hu
,
Y.
,
Blouin
,
V. Y.
, and
Fadel
,
G. M.
,
2008
, “
Design for Manufacturing of 3D Heterogeneous Objects With Processing Time Consideration
,”
ASME J. Mech. Des.
,
130
(
3
), p.
031701
.
33.
Cho
,
J. R.
, and
Ha
,
D. Y.
,
2002
, “
Optimal Tailoring of 2D Volume-Fraction Distributions for Heat-Resisting Functionally Graded Materials Using FDM
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
29–30
), pp.
3195
3211
.
34.
Zhang
,
X. J.
,
Chen
,
K. Z.
, and
Feng
,
X. A.
,
2004
, “
Optimization of Material Properties Needed for Material Design of Components Made of Multi-Heterogeneous Materials
,”
Mater. Des.
,
25
(
5
), pp.
369
378
.
35.
Panchal
,
J. H.
,
Kalidindi
,
S. R.
, and
McDowell
,
D. L.
,
2013
, “
Key Computational Modeling Issues in Integrated Computational Materials Engineering
,”
Comput.-Aided Des.
,
45
(
1
), pp.
4
25
.
36.
Torquato
,
S.
,
2002
,
Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Interdisciplinary Applied Mathematics: Mechanics and Materials
,
Springer
, New York.
37.
Latief
,
F.
,
Biswas
,
A.
,
Fauzi
,
U.
, and
Hilfer
,
R.
,
2010
, “
Continuum Reconstruction of the Pore Scale Microstructure for Fontainebleau Sandstone
,”
Physica A
,
389
(
8
), pp.
1607
1618
.
38.
Redenbach, C., 2009, “
Microstructure Models for Cellular Materials
,”
Comput. Mater. Sci.
,
44
(4), pp.
1397
1407
.
39.
Pasko
,
A.
,
Fryazinov
,
O.
,
Vilbrandt
,
T.
,
Fayolle
,
P.-A.
, and
Adzhiev
,
V.
,
2011
, “
Procedural Function-Based Modelling of Volumetric Microstructures
,”
Graphical Models
,
73
(
5
), pp.
165
181
.
40.
Chen
,
Y.
,
2007
, “
3D Texture Mapping for Rapid Manufacturing
,”
Comput.-Aided Des. Appl.
,
4
(
1–6
), pp.
761
771
.
41.
Kou
,
X.
, and
Tan
,
S. S.
,
2010
, “
Modeling Functionally Graded Porous Structures With Stochastic Voronoi Diagram and B-Spline Representations
,”
International Conference on Manufacturing Automation
(
ICMA
), Hong Kong, China, Dec. 13–15, pp.
99
106
.
42.
Kou
,
X.
, and
Tan
,
S.
,
2010
, “
A Simple and Effective Geometric Representation for Irregular Porous Structure Modeling
,”
Comput.-Aided Des.
,
42
(
10
), pp.
930
941
.
43.
Yeong
,
C.
, and
Torquato
,
S.
,
1998
, “
Reconstructing Random Media
,”
Phys. Rev. E
,
58
(
1
), pp.
224
233
.
44.
Jiao
,
Y.
,
Stillinger
,
F.
, and
Torquato
,
S.
,
2007
, “
Modeling Heterogeneous Materials Via Two-Point Correlation Functions: Basic Principles
,”
Phys. Rev. E
,
76
(
3
), pp.
1
15
.
45.
Xu
,
H.
,
Li
,
Y.
,
Brinson
,
L. C.
, and
Chen
,
W.
,
2014
, “
A Descriptor-Based Design Methodology for Developing Heterogeneous Microstructural Materials System
,”
ASME J. Mech. Des.
,
136
(5), p. 051007.
46.
Graham-Brady
,
L.
, and
Xu
,
X. F.
,
2008
, “
Stochastic Morphological Modeling of Random Multiphase Materials
,”
ASME J. Appl. Mech.
,
75
(
6
), p.
061001
.
47.
Jiao
,
Y.
,
Stillinger
,
F.
, and
Torquato
,
S.
,
2009
, “
A Superior Descriptor of Random Textures and Its Predictive Capacity
,”
Proc. Natl. Acad. Sci.
,
106
(
42
), pp.
17634
17639
.
48.
Guo
,
E. Y.
,
Chawla
,
N.
,
Jing
,
T.
,
Torquato
,
S.
, and
Jiao
,
Y.
,
2014
, “
Accurate Modeling and Reconstruction of Three-Dimensional Percolating Filamentary Microstructures From Two-Dimensional Micrographs Via Dilation-Erosion Method
,”
Mater. Charact.
,
89
, pp.
33
42
.
49.
Zhou
,
S.
, and
Li
,
Q.
,
2008
, “
Design of Graded Two-Phase Microstructures for Tailored Elasticity Gradients
,”
J. Mater. Sci.
,
43
(
15
), pp.
5157
5167
.
50.
Bostanabad
,
R.
,
Chen
,
W.
, and
Apley
,
D. W.
,
2016
, “
Characterization and Reconstruction of 3D Stochastic Microstructures Via Supervised Learning
,”
J. Microsc.
,
264
(
3
), pp.
282
297
.
51.
Hajizadeh
,
A.
,
Safekordi
,
A.
, and
Farhadpour
,
F. A.
,
2011
, “
A Multiple-Point Statistics Algorithm for 3D Pore Space Reconstruction From 2D Images
,”
Adv. Water Resour.
,
34
(
10
), pp.
1256
1267
.
52.
Cang
,
R.
, and
Yi
,
R.
,
2016
, “
Deep Network-Based Feature Extraction and Reconstruction of Complex Material Microstructures
,”
ASME
Paper No. DETC2016-59404.
53.
Holdstein
,
Y.
,
Fischer
,
A.
,
Podshivalov
,
L.
, and
Bar-Yoseph
,
P. Z.
,
2009
, “
Volumetric Texture Synthesis of Bone Micro-Structure as a Base for Scaffold Design
,”
IEEE International Conference on Shape Modeling and Applications
(
SMI
), Beijing, China, June 26–28, pp.
81
88
.
54.
Sundararaghavan
,
V.
,
2014
, “
Reconstruction of Three-Dimensional Anisotropic Microstructures From Two-Dimensional Micrographs Imaged on Orthogonal Planes
,”
Integr. Mater. Manuf. Innovation
,
3
(
1
), p.
19
.
55.
Turner
,
D. M.
, and
Kalidindi
,
S. R.
,
2016
, “
Statistical Construction of 3-D Microstructures From 2-D Exemplars Collected on Oblique Sections
,”
Acta Mater.
,
102
, pp.
136
148
.
56.
Wei
,
L.-Y.
, and
Levoy
,
M.
,
2000
, “
Fast Texture Synthesis Using Tree-Structured Vector Quantization
,”
27th Annual Conference on Computer Graphics and Interactive Techniques
(
SIGGRAPH
), New Orleans, LA, July 23–28, pp.
479
488
.
57.
Levina
,
E.
, and
Bickel
,
P. J.
,
2006
, “
Texture Synthesis and Nonparametric Resampling of Random Fields
,”
Ann. Stat.
,
34
(
4
), pp.
1751
1773
.
58.
Ashikhmin
,
M.
,
2001
, “
Synthesizing Natural Textures
,”
Symposium on Interactive 3D Graphics
, Research Triangle Park, NC, Mar. 19–21, pp.
217
226
.
59.
Efros
,
A. A.
, and
Freeman
,
W. T.
,
2001
, “
Image Quilting for Texture Synthesis and Transfer
,”
28th Annual Conference on Computer Graphics and Interactive Techniques
(
SIGGRAPH
), Los Angeles, CA, Aug. 12–17, Vol.
1
, pp.
341
346
.
60.
Zhang
,
J.
,
Zhou
,
K.
,
Velho
,
L.
,
Guo
,
B.
, and
Shum
,
H.-Y.
,
2003
, “
Synthesis of Progressively-Variant Textures on Arbitrary Surfaces
,”
ACM Trans. Graphics
,
22
(
3
), p.
295
.
61.
Zohdi
,
T. I.
,
2013
, “
Basic Microstructure-Macroproperty Calculations
,”
Effective Properties of Heterogeneous Materials SE-5
(Solid Mechanics and Its Applications),
M.
Kachanov
and
I.
Sevostianov
, eds., Vol.
193
,
Springer
, Dordrecht,
The Netherlands
, pp.
365
389
.
62.
Ohser
,
J.
, and
Schladitz
,
K.
,
2009
,
3D Images of Materials Structures: Processing and Analysis
,
Wiley
,
Weinheim, Germany
.
63.
Hill
,
R.
,
2002
, “
The Elastic Behaviour of a Crystalline Aggregate
,”
Proc. Phys. Soc., Sect. A
,
65
(
5
), pp.
349
354
.
64.
Kalidindi
,
S. R.
,
Binci
,
M.
,
Fullwood
,
D.
, and
Adams
,
B. L.
,
2006
, “
Elastic Properties Closures Using Second-Order Homogenization Theories: Case Studies in Composites of Two Isotropic Constituents
,”
Acta Mater.
,
54
(
11
), pp.
3117
3126
.
65.
Monetti
,
R.
,
Bauer
,
J.
,
Sidorenko
,
I.
,
Müller
,
D.
,
Rummeny
,
E.
,
Matsuura
,
M.
,
Eckstein
,
F.
,
Lochmüller
,
E.-M.
,
Zysset
,
P.
, and
Räth
,
C.
,
2009
, “
Assessment of the Human Trabecular Bone Structure Using Minkowski Functionals
,”
Medical Imaging 2009: Biomedical Applications in Molecular, Structural, and Functional Imaging
(Society of Photo-Optical Instrumentation Engineers),
X. P.
Hu
, and
A. V.
Clough
, eds., Vol.
7262
, p.
72620N
.
66.
Xu
,
H.
,
Dikin
,
D.
,
Burkhart
,
C.
, and
Chen
,
W.
,
2014
, “
Descriptor-Based Methodology for Statistical Characterization and 3D Reconstruction of Microstructural Materials
,”
Comput. Mater. Sci.
,
85
, pp.
206
216
.
67.
Kwatra
,
V.
,
Schodl
,
A.
,
Essa
,
I.
, and
Turk
,
G.
,
2003
, “
Graphcut Textures: Image and Video Synthesis Using Graph Cuts
,”
ACM Trans. Graphics
,
22
(3), pp. 277–286.
68.
Barnes
,
C.
,
Shechtman
,
E.
,
Finkelstein
,
A.
, and
Goldman
,
D. B.
,
2009
, “
PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing
,”
ACM Trans. Graphics
,
28
(
3
), p.
1
.
69.
Barnes
,
C.
,
Zhang
,
F.-L.
,
Lou
,
L.
,
Wu
,
X.
, and
Hu
,
S.-M.
,
2015
, “
PatchTable: Efficient Patch Queries for Large Datasets and Applications
,”
ACM Trans. Graphics
,
34
(
4
), pp.
97:1
97:10
.
70.
Yuan
,
J.
,
Bae
,
E.
, and
Tai
,
X. C.
,
2010
, “
A Study on Continuous Max-Flow and Min-Cut Approaches
,”
IEEE Conference on Computer Vision and Pattern Recognition
(
CVPR
), San Francisco, CA, June 13–18, Vol.
1
, pp.
2217
2224
.
71.
Jiang
,
C.
,
Giger
,
M. L.
,
Chinander
,
M. R.
,
Martell
,
J. M.
,
Kwak
,
S.
, and
Favus
,
M. J.
,
1999
, “
Characterization of Bone Quality Using Computer-Extracted Radiographic Features
,”
Med. Phys.
,
26
(
6
), pp.
872
879
.
72.
Hutmacher
,
D. W.
,
2000
, “
Scaffolds in Tissue Engineering Bone and Cartilage
,”
Biomaterials
,
21
(
24
), pp.
2529
2543
.
73.
Bose
,
S.
,
Roy
,
M.
, and
Bandyopadhyay
,
A.
,
2012
, “
Recent Advances in Bone Tissue Engineering Scaffolds
,”
Trends Biotechnol.
,
30
(
10
), pp.
546
554
.
74.
Fryazinov
,
O.
,
Sanchez
,
M.
, and
Pasko
,
A.
,
2015
, “
Shape Conforming Volumetric Interpolation With Interior Distances
,”
Comput. Graphics
,
46
, pp.
149
155
.
75.
Liu
,
K.
, and
Tovar
,
A.
,
2014
, “
An Efficient 3D Topology Optimization Code Written in Matlab
,”
Struct. Multidiscip. Optim.
,
50
(
6
), pp.
1175
1196
.
76.
Darabi
,
S.
,
Shechtman
,
E.
,
Barnes
,
C.
,
Goldman
,
D. B.
, and
Sen
,
P.
,
2012
, “
Image Melding: Combining Inconsistent Images Using Patch-Based Synthesis
,”
ACM Trans. Graphics
,
31
(
4
), pp.
1
10
.
77.
Stoyan
,
D.
, and
Mecke
,
K. R.
,
2005
, “
The Boolean Model: From Matheron Till Today
,”
Space, Structure and Randomness
,
Springer
,
New York
, pp.
151
181
.
You do not currently have access to this content.