Abstract

The role of virtual environments (VEs) is crucial in efficient design and operation of unmanned vehicles. VEs are extensively used in operator training for tele-operation, planning using programming by demonstration, and hardware and software designs. VE for unmanned sea surface vehicles (USSV) requires a 6 degree of freedom dynamics simulation in the time domain. In order to be interactive, the VE requires real-time performance of the underlying dynamics simulator. In general, the dynamics simulation of USSVs involves the following four main operations: (1) computation of dynamic pressure head due to fluid flow around the hull under the ocean wave, (2) computation of wet surface, (3) computing the surface integral of the dynamic pressure head over the wet surface, and (4) solving the rigid body dynamics equation. The first three operations depend upon the boat geometry complexity and need to be performed at each time step, making the simulation run very slow. In this paper, we address the problem of physics preserving model simplification for real-time potential flow based simulator for a USSV in the time domain, with an arbitrary hull geometry. This paper reports model simplification algorithms based on clustering, temporal coherence, and hardware acceleration using parallel computing on multiple cores to obtain real time simulation performance for the developed VE.

References

1.
Argall
,
B. D.
,
Chernova
,
S.
,
Veloso
,
M.
, and
Browning
,
B.
, 2009, “
A Survey of Robot Learning From Demonstration
,”
Rob. Auton. Syst.
,
57
(
5
), pp.
469
483
.
2.
Gupta
,
S. K.
,
Anand
,
D. K.
,
Thakur
,
A. D.
,
Svec
,
P.
, and
Schwartz
,
M.
, “
A Simulation Based Framework for Discovering Planning Logic for Unmanned Surface Vehicles
,
ASME Engineering Systems Design and Analysis Conference
, July 12-14 2010,
Istanbul, Turkey
.
3.
Beck
,
R.
, and
Reed
,
A.
, 2001, “
Modern Seakeeping Computations For Ships
, ”
23rd Symposium on Naval Hydrodynamics
Naval Studies Board (NSB)
.
4.
Guevel
,
P.
, and
Bougis
,
J.
, 1982,“
Ship Motions With Forward Speed in Infinite Depth
,
Int. Shipbuild. Prog.
,
29
, pp.
103
117
.
5.
Inglis
,
R. B.
, and
Price
,
W. G.
, 1981, “
A Three-Dimensional Ship Motion Theory Comparison Between Theoretical Prediction and Experimental Data of the Hydrodynamic Coefficients With Forward Speed
,
Trans. R. Inst. Naval Archit.
,
124
, pp.
141
157
.
6.
Fossen
,
T. I.
, and
Smogeli
Ø. N.
, 2004, “
Nonlinear Time-Domain Strip Theory Formulation for Low-Speed Manoeuvering and Station-Keeping
,”
Model. Identif. Control
,
25
(
4
), pp.
201
221
.
7.
Newman
,
J. N.
,
Marine Hydrodynamics
(
MIT Press
,
Cambridge, MA
, 1977).
8.
Krishnamurthy
,
P.
,
Khorrami
,
F.
, and
Fujikawa
,
S.
, 2005,“
A Modeling Framework for Six Degree-of-Freedom Control of Unmanned Sea Surface Vehicles
,”
Proceedings and 2005 European Control Conference Decision and Control CDC-ECC’05
, December 12-15, pp.
2676
2681
.
9.
Singh
,
S. P.
, and
Sen
,
D.
, 2007, “
A Comparative Linear and Nonlinear Ship Motion Study Using 3-D Time Domain Methods
,”
Ocean Eng.
,
34
(
13
), pp.
1863
1881
.
10.
Gorski
,
J. J.
, 2002,“
Present State of Numerical Ship Hydrodynamics and Validation Experiments
,
J. Offshore Mech. Arct. Eng.
,
124
(
2
), pp.
74
80
.
11.
Kim
,
K. H.
, 2002, “
Simulation of Surface Ship Dynamics Using Unsteady RANS Codes
,”
Reduction of Military Vehicle Acquisition Time and Cost through Advanced Modelling and Virtual Simulation
RTO Applied Vehicle Technology Panel (AVT) Symposium
,
Paris, France
, April 22-25, Paris, France.
12.
Carrica
,
P. M.
,
Wilson
,
R. V.
,
Noack
,
R. W.
, and
Stern
,
F.
, 2007,“
Ship Motions Using Single-Phase Level Set With Dynamic Overset Grids
,”
Comput. Fluids
,
36
(
9
), pp.
1415
1433
.
13.
Kim
,
K. H.
,
Gorski
,
J.
,
Miller
,
R.
,
Wilson
,
R.
,
Stern
,
F.
,
Hyman
,
M.
, and
Burg
,
C.
, 2003, “
Simulation of Surface Ship Dynamics
,”
Proceedings User Group Conference
, 2003 pp.
188
199
14.
Weymouth
,
G. D.
,
Wilson
,
R. V.
, and
Stern
,
F.
, 2005,“
RANS Computational Fluid Dynamics Predictions of Pitch and Heave Ship Motions in Head Seas
,”
J. Ship Res.
,
49
(
18
), pp.
80
97
.
15.
Batty
,
C.
,
Bertails
,
F.
, and
Bridson
,
R.
, 2007,“
A Fast Variational Framework for Accurate Solid-Fluid Coupling
,”
ACM Trans. Graphics
,
26
(
3
), p.
100
.
16.
Carlson
,
M.
,
Mucha
,
P. J.
, and
Turk
,
G.
, 2004,“
Rigid Fluid: Animating the Interplay Between Rigid Bodies and Fluid
,”
ACM Trans. Graphics
,
23
(
3
), pp.
377
384
.
17.
Becker
,
M.
,
Tessendorf
,
H.
, and
Teschner
,
M.
, 2009,“
Direct Forcing for Lagrangian Rigid-Fluid Coupling
,”
IEEE Trans. Visualization Comput. Graph.
,
15
(
3
), pp.
493
503
.
18.
Do
,
K. D.
,
Jiang
,
Z. P.
, and
Pan
,
J.
, 2002,“
Underactuated Ship Global Tracking Under Relaxed Conditions
,”
IEEE Trans. Autom. Control
,
47
(
9
), pp.
1529
1536
.
19.
Katebi
,
M. R.
,
Grimble
,
M. J.
, and
Zhang
,
Y.
, 1997,“
H∞robust Control Design for Dynamic Ship Positioning
,”
IEEE Proc. Control Theory Appl.
,
144
(
2
), pp.
110
120
.
20.
Lefeber
,
E.
,
Pettersen
,
K. Y.
, and
Nijmeijer
,
H.
, 2003,“
Tracking Control of an Underactuated Ship
,”
IEEE Trans. Control Syst. Technol.
,
11
(
1
), pp.
52
61
.
21.
Loria
,
A.
,
Fossen
,
T. I.
, and
Panteley
,
E.
, 2000,“
A Separation Principle for Dynamic Positioning of Ships: Theoretical and Experimental Results
,”
IEEE Trans. Control Syst. Technol.
8
, pp.
332
343
.
22.
Mazenc
,
F.
,
Pettersen
,
K.
, and
Nijmeijer
,
H.
, 2002,“
Global Uniform Asymptotic Stabilization of an Underactuated Surface Vessel
,
IEEE Trans. Autom. Control
,
47
(
10
), pp.
1759
1762
.
23.
Fossen
,
T. I.
,
Guidance and Control of Ocean Vehicles
(
Wiley
,
Chicester, England
, 1994).
24.
Chapman
,
B.
,
Jost
,
G.
, and
Pas
,
A. R. V. D.
, 2008,
Using OpenMP Portable Shared Memory Parallel Programming
,
The MIT Press
,
Cambridge, Massachusetts
.
You do not currently have access to this content.