Skip Nav Destination
Issues
January 2012
ISSN 1555-1415
EISSN 1555-1423
In this Issue
Research Papers
Use of the Non-Inertial Coordinates in the Analysis of Train Longitudinal Forces
J. Comput. Nonlinear Dynam. January 2012, 7(1): 011001.
doi: https://doi.org/10.1115/1.4004122
Topics:
Algebra
,
Deformation
,
Equations of motion
,
Gears
,
Kinematics
,
Springs
,
Trains
,
Algorithms
,
Railroads
,
Differential algebraic equations
Analysis of the Dynamic Behavioral Performance of Mechanical Systems With Multi–Clearance Joints
J. Comput. Nonlinear Dynam. January 2012, 7(1): 011002.
doi: https://doi.org/10.1115/1.4004263
Topics:
Clearances (Engineering)
,
Computer software
,
Bearings
Control of a Forced Impacting Hertzian Contact Oscillator Near Sub- and Superharmonic Resonances of Order 2
J. Comput. Nonlinear Dynam. January 2012, 7(1): 011003.
doi: https://doi.org/10.1115/1.4004309
Topics:
Displacement
,
Resonance
,
Stiffness
,
Excitation
,
Frequency response
Analytic Bounds for Instability Regions in Periodic Systems With Delay via Meissner’s Equation
J. Comput. Nonlinear Dynam. January 2012, 7(1): 011004.
doi: https://doi.org/10.1115/1.4004468
Topics:
Approximation
,
Cutting
,
Delays
,
Eigenvalues
,
Feedback
,
Milling
,
Stability
,
Numerical stability
,
Delay differential equations
,
Degrees of freedom
Analysis of the Nonlinear Dynamics of the Timoshenko Flexible Beams Using Wavelets
J. Comput. Nonlinear Dynam. January 2012, 7(1): 011005.
doi: https://doi.org/10.1115/1.4004376
Analysis of the Frictional Vibration of a Cleaning Blade in Laser Printers Based on a Two-Degree-Of-Freedom Model
J. Comput. Nonlinear Dynam. January 2012, 7(1): 011006.
doi: https://doi.org/10.1115/1.4004469
Topics:
Bifurcation
,
Blades
,
Friction
,
Lasers
,
Stability
,
Vibration
,
Equilibrium (Physics)
,
Damping
Experimental Rotations of a Pendulum on Water Waves
J. Comput. Nonlinear Dynam. January 2012, 7(1): 011007.
doi: https://doi.org/10.1115/1.4004547
Topics:
Pendulums
,
Waves
,
Excitation
,
Flumes
,
Water waves
Use of B-Spline in the Finite Element Analysis: Comparison With ANCF Geometry
Ahmed A. Shabana, Ashraf M. Hamed, Abdel - Nasser A. Mohamed, Paramsothy Jayakumar, Michael D. Letherwood
J. Comput. Nonlinear Dynam. January 2012, 7(1): 011008.
doi: https://doi.org/10.1115/1.4004377
Topics:
B-splines
,
Chain
,
Deformation
,
Finite element analysis
,
Geometry
,
Belts
,
Polynomials
,
Interpolation
,
Rotation
Natural Coordinates in the Optimal Control of Multibody Systems
J. Comput. Nonlinear Dynam. January 2012, 7(1): 011009.
doi: https://doi.org/10.1115/1.4004886
Topics:
Equations of motion
,
Multibody systems
,
Optimal control
,
Momentum
,
Algebra
,
Space vehicles
Numerical Investigation of Abradable Coating Removal in Aircraft Engines Through Plastic Constitutive Law
J. Comput. Nonlinear Dynam. January 2012, 7(1): 011010.
doi: https://doi.org/10.1115/1.4004951
Topics:
Blades
,
Coatings
,
Constitutive equations
,
Coating processes
,
Aircraft engines
Effects of Damaged Boundaries on the Free Vibration of Kirchhoff Plates: Comparison of Perturbation and Spectral Collocation Solutions
J. Comput. Nonlinear Dynam. January 2012, 7(1): 011011.
doi: https://doi.org/10.1115/1.4004808
Topics:
Boundary-value problems
,
Free vibrations
,
Plates (structures)
,
Damage
Nonlinear Parameter Identification in Multibody Systems Using Homotopy Continuation
J. Comput. Nonlinear Dynam. January 2012, 7(1): 011012.
doi: https://doi.org/10.1115/1.4004885
Topics:
Multibody systems
,
Optimization
,
Pendulums
,
Algorithms
,
Differential equations
Nonlinear Dynamics of Inverted Pendulum Driven by Airflow
J. Comput. Nonlinear Dynam. January 2012, 7(1): 011013.
doi: https://doi.org/10.1115/1.4004963
Topics:
Chaos
,
Pendulums
,
Drag (Fluid dynamics)
,
Air flow
Nonlinear Vibration Signature Analysis of a High Speed Rotor Bearing System Due to Race Imperfection
J. Comput. Nonlinear Dynam. January 2012, 7(1): 011014.
doi: https://doi.org/10.1115/1.4004962
Topics:
Bearings
,
Damping
,
Deformation
,
Rotors
,
Vibration
,
Waves
,
Ball bearings
,
Poincaré maps
,
Springs
,
Stress
Technical Briefs
Ritz Legendre Multiwavelet Method for the Damped Generalized Regularized Long-Wave Equation
J. Comput. Nonlinear Dynam. January 2012, 7(1): 014501.
doi: https://doi.org/10.1115/1.4004121
Email alerts
RSS Feeds
An Efficient Analysis of Amplitude and Phase Dynamics in Networked MEMS-Colpitts Oscillators
J. Comput. Nonlinear Dynam
Nonlinear Dynamics of a Magnetic Shape Memory Alloy Oscillator
J. Comput. Nonlinear Dynam (December 2024)
Influences of Tooth Crack on Dynamic Characteristics of a Multi-Stage Gear Transmission System Considering the Flash Temperature
J. Comput. Nonlinear Dynam (December 2024)
Data-Driven Modeling of Tire–Soil Interaction With Proper Orthogonal Decomposition-Based Model Order Reduction
J. Comput. Nonlinear Dynam (December 2024)