In this paper, global bifurcations and chaotic dynamics under bounded noise perturbation for the nonlinear normalized radial electric field near plasma are investigated using the Melnikov method. From this analysis, we get criteria that could be useful for designing the model parameters so that the appearance of chaos could be induced (when heating particles) or run out for quiescent H-mode appearance. For this purpose, we use a test of chaos to verify our prediction. We find that, chaos could be enhanced by noise amplitude growing. The results of numerical simulations also reveal that noise intensity modifies the attractor size through power spectra, correlation function, and Poincaré map. The criterion from the Melnikov method which is used to analytically predict the existence of chaotic behavior of the normalized radial electric field in plasma could be a valid tool for predicting harmful parameters values involved in experiment on Tokamak L–H transition.

References

1.
Yoshizawa
,
A.
,
Itoh
,
S.-I.
, and
Itoh
,
K.
,
2002
,
Plasma and Fluid Turbulence, Theory and Modelling
, 1st ed., Vol.
1
of Series in Plasma Physics,.
Taylor and Francis, IOP Publishing Ltd
,
Bristol, UK
, Chap. 2.
2.
Shats
,
M. G.
,
Rudakov
,
D. L.
,
Blackwell
,
B. D.
,
Borg
,
G. G.
,
Dewar
,
R. L.
,
Hamberger
,
S. M.
,
Howard
,
J.
, and
Sharp
,
L. E.
,
1996
, “
Improved Particle Confinement Mode in the H-1 Heliac Plasma
,”
Phys. Rev. Lett.
,
77
(
20
), pp.
4190
4193
.10.1103/PhysRevLett.77.4190
3.
Ida
,
K.
,
Hidekuma
,
S.
,
Miura
,
Y.
,
Fujita
,
T.
,
Mori
,
M.
,
Hoshino
,
K.
,
Suzuki
,
N.
,
Yamauchi
,
T.
, and
the JFT-2M Group
,
1990
, “
Edge Electric-Field Profiles of H-Mode Plasmas in the JFT-2M Tokamak
,”
Phys. Rev. Lett.
,
65
(
11
), pp.
1364
1367
.10.1103/PhysRevLett.65.1364
4.
Anishchenko
,
V. S.
,
Astakhov
,
A.
,
Neiman
,
A.
,
Vadivasova
,
T.
, and
Schimansky-Geier
,
L.
,
2007
,
Nonlinear Dynamics of Chaotic and Stochastic Systems, Tutorial and Modern Developments
, 2nd ed., Vol.
16
, Springer Series in Synergetics,
Springer-Verlag
,
Berlin
, Chap. 1.
5.
Horsthemke
,
W.
, and
Lefever
,
R.
,
2006
,
Noise-Induced Transitions Theory and Applications in Physics, Chemistry, and Biology
, 2nd ed., Vol.
15
, Springer Series in Synergetics,
Springer-Verlag
,
Berlin
, Chap. 7.
6.
Kapitaniak
,
T.
,
1996
,
Controlling Chaos, Theoretical and Practical Methods in Nonlinear Dynamics
, 1st ed.,
Academic Press
,
London
, Chap. 1.
7.
Cao
,
H.
, and
Chen
,
G.
,
2005
, “
Global and Local Control of Homoclinic and Heteroclinic Bifurcations
,”
Int. J. Bifurcation Chaos
,
15
(
8
), pp.
2411
2432
.10.1142/S0218127405013393
8.
Rempel
,
E. L.
,
Chian
,
A. C.-L.
,
Preto
,
A. J.
, and
Stephany
,
S.
,
2004
, “
Intermittent Chaos Driven by Nonlinear Alfvén Waves
,”
Nonlinear Processes Geophys.
,
11
(
5/6
), pp.
691
700
.10.5194/npg-11-691-2004
9.
Siewe
,
M. S.
,
Moukam Kakmeni
,
F. M.
,
Tchawoua
,
C.
, and
Woafo
,
P.
,
2005
, “
Bifurcations and Chaos in the Triple-Well Φ6-Van der Pol Oscillator Driven by External and Parametric Excitations
,”
Phys. A
,
357
, pp.
383
396
.10.1016/j.physa.2005.06.070
10.
Siewe
,
M. S.
,
Moukam Kakmeni
,
F. M.
, and
Tchawoua
,
C.
,
2004
, “
Resonant Oscillation and Homoclinic Bifurcation in a Φ6-Van der Pol Oscillator
,”
Chaos, Solitons Fract.
,
21
, pp.
841
853
.10.1016/j.chaos.2003.12.014
11.
Siewe
,
M. S.
,
Cao
,
H.
, and
Sanjuan
,
M. A. F.
,
2009
, “
Effect of Nonlinear Dissipation on the Basin Boundaries of a Driven Two-Well Rayleigh–Duffing Oscillator
,”
Chaos, Solitons Fract.
,
39
, pp.
1092
1099
.10.1016/j.chaos.2007.05.007
12.
Liu
,
W. Y.
,
Zhu
,
W. Q.
, and
Huang
,
Z. L.
,
2001
, “
Effect of Bounded Noise on Chaostic Motion of Duffing Oscillators under Parametric Excitations
,”
Chaos
, Solitons Fract.,
12
(
3
), pp.
527
537
.
13.
Liu
,
W. Y.
, and
Zhu
,
W. Q.
,
2004
, “
Homoclinic Bifurcation and Chaos in Simple Pendulum Under Bounded Noise Excitation
,”
Chaos, Solitons Fract.
,
20
(
3
), pp.
593
607
.10.1016/j.chaos.2003.08.010
14.
Gan
,
C. B.
,
2005
, “
Noise-Induced Chaos and Basin Erosion in Softening Duffing Oscillator
,”
Chaos, Solitons Fract.
,
25
(
5
), pp.
1069
1081
.10.1016/j.chaos.2004.11.070
15.
Sun
,
Z. K.
,
Xu
,
W.
, and
Yang
,
X. L.
,
2006
, “
Influences of Time Delay and Noise on the Chaotic Motion of a Bistable System
,”
Phys. Lett. A
,
352
(
1–2
), pp.
21
35
.10.1016/j.physleta.2005.11.061
16.
Yang
,
X. L.
,
Xu
,
W.
,
Sun
,
Z. K.
, and
Fang
,
T.
,
2005
, “
Effect of Bounded Noise on Chaotic Motion of a Triple-Well Potential System
,”
Chaos, Solitons Fract.
,
25
(
2
), pp.
415
424
.10.1016/j.chaos.2004.12.005
17.
Sun
,
Z. K.
,
Xu
,
W.
, and
Yang
,
X. L.
,
2006
, “
Effect of Random Noise on Chaotic Motion of a Particle in a Φ6 Potential
,”
Chaos, Solitons Fract.
,
27
(
1
), pp.
127
138
.10.1016/j.chaos.2005.02.033
18.
Yang
,
X. L.
,
Xu
,
W.
, and
Sun
,
Z. K.
,
2006
, “
Effect of Bounded Noise on the Chaotic Motion of a Duffing Van Der Pol Oscillator in a Φ6 Potential
,”
Chaos, Solitons Fract.
,
27
(
3
), pp.
778
788
.10.1016/j.chaos.2005.04.048
19.
Itoh
,
S. I.
, and
Itoh
,
K.
,
1988
, “
Model of L to H–Mode Transition in Tokamak
,”
Phys. Rev. Lett.
,
60
(
22
), pp.
2276
2279
.10.1103/PhysRevLett.60.2276
20.
Groebner
,
R. J.
,
Burrel
,
K. H.
, and
Seraydarian
,
R. P.
,
1990
, “
Role of Edge Electric Field and Poloidal Rotation in the L–H Transition
,”
Phys. Rev. Lett.
,
64
(
25
), pp.
3015
3018
.10.1103/PhysRevLett.64.3015
21.
Doyle
,
E. J.
,
Houlberg
,
W. A.
,
Kamada
,
Y.
,
Mukhovatov
,
V.
,
Osborne
,
T. H.
,
Polevoi
,
A.
,
Bateman
,
G.
,
Connor
,
J. W.
,
Cordey
,
J. G.
,
Fujita
,
T.
,
Garbet
,
X.
,
Hahm
,
T. S.
,
Horton
,
L. D.
,
Hubbard
,
A. E.
,
Imbeaux
,
F.
,
Jenko
,
F.
,
Kinsey
,
J. E.
,
Kishimoto
,
Y.
,
Li
,
J.
,
Luce
,
T. C.
,
Martin
,
Y.
,
Ossipenko
,
M.
,
Parail
,
V.
,
Peeters
,
A.
,
Rhodes
,
T. L.
,
Rice
,
J. E.
,
Roach
,
C. M.
,
Rozhansky
,
V.
,
Ryter
,
F.
,
Saibene
,
G.
,
Sartori
,
R.
,
Sips
,
A. C. C.
,
Snipes
,
J. A.
,
Sugihara
,
M.
,
Synakowski
,
E. J.
,
Takenaga
,
H.
,
Takizuka
,
T.
,
Thomsen
,
K.
,
Wade
,
M. R.
,
Wilson
,
H. R.
,
ITPA Confinement Database Modelling, ITPA Pedestal Edge Topical Group, ITPA Transport Physics Topical Group
,
2007
, “
Plasma Confinement and Transport
,”
Nucl. Fusion
,
47
(
6
), pp.
S18
S127
.10.1088/0029-5515/47/6/S02
22.
Novakovskii
,
S. V.
,
Liu
,
C. S.
,
Sagdeev
,
R. Z.
, and
Rosenbluth
,
M. N.
,
1997
, “
The Radial Electric Field Dynamics in the Neoclassical Plasmas
,”
Phys. Plasmas
,
4
(
12
), pp.
4272
4288
.10.1063/1.872590
23.
Burrell
,
K. H.
,
1997
, “
Effects of E × B Velocity Shear and Magnetic Shear on Turbulence and Transport in Magnetic Confinement Devices
,”
Phys. Plasmas
,
4
(
5
), pp.
1499
1518
.10.1063/1.872367
24.
Luxon
,
J. L.
, and
Davis
,
L. G.
,
1985
, “
Big Dee- a Flexible Facility Operating Near Breakeven Conditions
,”
Fusion Technol.
,
8
(
1
), pp.
441
449
.
25.
Biglary
,
H.
,
Diamond
,
P. H.
, and
Terry
,
P. W.
,
1990
, “
Influence of Sheared Poloidal Rotation on Edge Turbulence
,”
Phys. Fluids B
,
2
(
1
), pp.
1
4
.10.1063/1.859529
26.
Zhang
,
W.
, and
Cao
,
D.
,
2006
, “
Local and Global Bifurcations of L-Mode to H-Mode Transition Near Plasma Edge in Tokamak
,”
Chaos, Solitons Fract.
,
29
(
1
), pp.
223
232
.10.1016/j.chaos.2005.08.020
27.
Itoh
,
S. I.
,
Itoh
,
K.
, and
Fukuyama
,
A.
,
1993
, “
The ELMy-H Mode as Limit Cycle and Transient Responses of H-Modes in Tokamaks
,”
Nucl. Fusion
,
33
(
10
), pp.
1445
1457
.10.1088/0029-5515/33/10/I04
28.
Wang
,
X.
,
Cao
,
S.
, and
Chen
,
Y.
,
1996
, “
The Stability and Catastrophe of Diffusion Processes of Plasma Boundary Layer
,”
Sci. China Ser. A
,
39
(
4
), pp.
430
441
.
29.
Itoh
,
S. I.
,
Itoh
,
K.
, and
Fukuyama
,
A.
,
1993
, “Plasma physics and controlled nuclear fusion research,”
IAEA Proceedings of the Fourteenth International Conference
, Vol.
2
.
30.
Chen
,
F.
,
Zhou
,
L.
, and
Wang
,
X.
,
2009
, “
Chaotic Motions of the L-Mode to H-Mode Transition Model in Tokamak
,”
Appl. Math. Mech.
,
30
(
7
), pp.
811
827
.10.1007/s10483-009-0701-z
31.
Lin
,
Y. K.
, and
Cai
,
C. Q.
,
1995
,
Probabilistic Structural Dynamics, Advanced Theory and Applications
,
McGraw-Hill
,
New York
, pp.
10
29
.
32.
Crauel
,
H.
, and
Gundlach
,
M.
,
1999
,
Stochastic Dynamics
,
Springer-Verlag
,
New York
, pp.
20
24
.
33.
Liu
,
W. Y.
,
Zhu
,
W. Q.
, and
Huang
,
Z. L.
,
2001
, “
Effect of Bounded Noise on Chaotic Motion of Duffing Oscillator Under Parametric Excitation
,”
Chaos, Solitons Fract.
,
12
(
3
), pp.
527
537
.10.1016/S0960-0779(00)00002-3
34.
Frey
,
M.
, and
Simiu
,
E.
,
1993
, “
Noise-Induced Chaos and Phase Space Flux
,”
Phys. D
,
63
(
3–4
), pp.
321
340
.10.1016/0167-2789(93)90114-G
35.
Wiggins
,
S.
,
1988
,
Global Bifurcations and Chaos
,
Springer
,
New-York
, pp.
108
149
.
36.
Gan
,
C. B.
,
2006
, “
Noise-Induced Chaos in a Quadratically Nonlinear Oscillator
,”
Chaos, Solitons Fract.
,
30
(
4
), pp.
920
929
.10.1016/j.chaos.2005.08.157
37.
Wolf
,
A.
,
Swift
,
J.
,
Swinney
,
H.
, and
Vastano
,
A.
,
1985
, “
Determining Lyapunov Exponents From a Time Series
,”
Phys. D
,
16
(
3
), pp.
285
317
.10.1016/0167-2789(85)90011-9
38.
Rosenstein
,
M. T.
,
Colins
,
J. J.
, and
Luca
,
C. J.
,
1993
, “
A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets
,”
Phys. D
,
65
(
1–2
), pp.
117
134
.10.1016/0167-2789(93)90009-P
39.
Takens
,
F.
,
1981
, “
Detecting Strange Attractors in Turbulence, in Dynamical Systems and Turbulence
,”
Proceedings of a Symposium Held at the University of Warwick 1978/80
,
D.
Rand
, and
L. S.
Young
, eds.,
Dynamical Systems and Turbulence
, Vol.
898
, Mathematic Institute University of Warwick, Springer-Verlag, New York, pp.
366
381
.
40.
Sauer
,
T.
, and
Yorke
,
J. A.
,
1991
, “
Rigorous Verification of Trajectories for the Computer Simulation of Dynamical Systems
,”
Nonlinearity
,
4
(
3
), pp.
961
979
.10.1088/0951-7715/4/3/018
41.
Gottwald
,
G. A.
, and
Melbourne
,
I.
,
2008
, “
Comment on Reliability of the 0-1 Test for Chaos
,”
Phys. Rev. E
,
77
(
2
), p.
028201
.10.1103/PhysRevE.77.028201
42.
Gottwald
,
G. A.
, and
Melbourne
,
I.
,
2009
, “
On the Validity of the 0-1 Test for Chaos
,”
Nonlinearity
,
22
(
6
), pp.
1367
1382
.10.1088/0951-7715/22/6/006
43.
Gottwald
,
G. A.
, and
Melbourne
,
I.
,
2005
, “
Testing for Chaos in Deterministic Systems with Noise
,”
Phys. D
,
212
(
1–2
), pp.
100
110
.10.1016/j.physd.2005.09.011
44.
Falconer
,
I.
,
Gottwald
,
G. A.
,
Melbourne
I.
, and
Ormnes
,
K. W.
,
2007
, “
Application of the 0-1 Test for Chaos to Experimental Data
,”
SIAM J. Appl. Dyn. Syst.
6
(
2
), pp.
395
402
.10.1137/060672571
45.
Hu
,
J.
,
Tung
,
W.-W.
,
Gao
,
J.
, and
Cao
,
Y.
,
2005
, “
Reliability of the 0-1 Test for Chaos
,”
Phys. Rev. E
,
72
(
5
), p.
056207
.10.1103/PhysRevE.72.056207
46.
Ruelle
,
D.
,
1989
, “
The Thermodynamic Formalism for Expanding Maps
,”
Commun. Math. Phys.
,
125
(
2
), pp.
239
262
.10.1007/BF01217908
47.
Ostruszka
,
A.
, and
Zyczkowski
,
K.
,
2001
, “
Spectrum of the Frobenius–Perron Operator for Systems With Stochastic Perturbation
,”
Phys. Lett. A
,
289
(
6
), pp.
306
312
.10.1016/S0375-9601(01)00628-4
48.
Gidea
,
M.
, and
Quaid
,
D.
,
2005
, “
On Wesner's Method of Searching for Chaos on Low Frequency
,”
Econ. Bull.
,
3
(
42
), pp.
1
8
.
49.
Pikovsky
,
A. S.
, and
Kurths
,
J.
,
1997
, “
Coherence Resonance in a Noise-Driven Excitable System
,”
Phys. Rev. Lett.
,
78
(
5
), pp.
775
778
.10.1103/PhysRevLett.78.775
50.
Luca
,
G.
,
Peter
,
H.
,
Peter
,
J.
, and
Fabio
,
M.
,
1998
, “
Stochastic Resonance
,”
Rev. Mod. Phys.
70
(
1
), pp.
223
288
.10.1103/RevModPhys.70.223
51.
Shinosuka
,
M.
,
1971
, “
Simulation of Multivariate and Multidimensional Random Processes
,”
J. Acoust. Soc. Am.
,
49
(
1B
), pp.
357
367
.10.1121/1.1912338
52.
Shinozuka
,
M.
, and
Jan
,
C.-M.
,
1972
, “
Digital Simulation of Random Processes and its Applications
,”
J. Sound Vib.
,
25
(
1
), pp.
111
128
.10.1016/0022-460X(72)90600-1
53.
Liu
,
Z.
,
Lai
,
Y. C.
,
Billings
,
L.
, and
Schwartz
,
I. B.
,
2002
, “
Transition to Chaos in Continuous-Time Random Dynamical Systems
,”
Phys. Rev. Lett.
,
88
(
12
), p.
124101
.10.1103/PhysRevLett.88.124101
54.
Gao
,
J. B.
,
Hwang
,
S. K.
, and
Liu
,
J. M.
,
1999
, “
When Can Noise Induce Chaos?
,”
Phys. Rev. Lett.
,
82
(
6
), pp.
1132
1135
.10.1103/PhysRevLett.82.1132
55.
Numata
,
R.
,
Ball
,
R.
,
Dewar
,
R. L.
, and
Stals
,
L.
,
2007
, “
Bifurcation in Resistive Drift Wave Turbulence
,”
Proceedings of the 8th Asia-Pacific Complex Systems Conference
, ARC Centre for Complex Systems The Australian National University, eds.,
July 2–5
,
The Australian National University, Acton, Australia
, Vol.
7
, pp.
1
13
.
56.
Yamada
,
T.
,
Itoh
,
S.-I.
,
Maruta
,
T.
,
Kasuya
,
N.
,
Nagashima
,
Y.
,
Shinohara
,
S.
,
Terasaka
,
K.
,
Yagi
,
M.
,
Inagaki
,
S.
,
Kawai
,
Y.
,
Fujisawa
,
A.
, and
Itoh
,
K.
,
2008
, “
Anatomy of Plasma Turbulence
,”
Nature Phys.
,
4
, pp.
721
725
.10.1038/nphys1029
57.
Klinger
,
T.
,
Schroder
,
C.
,
Block
,
D.
,
Greiner
,
F.
,
Piel
,
A.
,
Bonhomme
,
G.
, and
Naulin
,
V.
,
2001
, “
Chaos Control and Taming of Turbulence in Plasma Devices
,”
Phys. Plasmas
,
8
(
5
), pp.
1961
1968
.10.1063/1.1350960
58.
Gravier
,
E.
,
Caron
,
X.
,
Bonhomme
,
G.
, and
Pierre
,
T.
,
1999
, “
Control of the Chaotic Regimes of Nonlinear Drift-Waves in a Magnetized Laboratory Plasma
,”
Phys. Plasmas
,
6
(
5
), pp.
1670
1673
.10.1063/1.873423
59.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
,
1990
, “
Controlling Chaos
,”
Phys. Rev. Lett.
,
64
(
11
), pp.
1196
1199
.10.1103/PhysRevLett.64.1196
60.
Pyragas
,
K.
,
1992
, “
Continuous Control of Chaos by Self-Controlling Feedback
,”
Phys. Lett. A
,
170
(
6
), pp.
421
428
.10.1016/0375-9601(92)90745-8
61.
Pierre
,
T.
,
Bonhomme
,
G.
, and
Atipo
,
A.
,
1996
, “
Controlling the Chaotic Regime of Nonlinear Ionization Waves using the Time-Delay Autosynchronization Method
,”
Phys. Rev. Lett.
,
76
(
13
), pp.
2290
2293
.10.1103/PhysRevLett.76.2290
62.
Jovanovic
,
D.
, and
Shukla
,
P. K.
,
2001
, “
Nonlinear Generation of Zonal Flows by Drift Waves
,”
Phys. Lett. A
,
289
(
4–5
), pp.
219
224
.10.1016/S0375-9601(01)00613-2
63.
Itoh
,
K.
,
Itoh
,
S. I.
,
Fukuyama
,
A.
,
Sanuki
,
H.
, and
Yagi
,
M.
,
1994
, “
Confinement Improvement in H-Mode Like Plasmas in Helical Systems
,”
Plasma Phys. Control. Fusion
,
36
(1)
, pp.
123
129
.10.1088/0741-3335/36/1/010
64.
Gravier
,
E.
,
1999
, “
Etude Expérimentale des Régimes Dynamiques des Ondes de Dérive Dans un Plasma Magnétisé de Laboratoire. Contrôle du Chaos Spatio-Temporel
,” Ph.D. thesis,
Université Henri Poincaré
,
Nancy, France
.
65.
Gravier
,
E.
,
Brochard
,
F.
,
Bonhomme
,
G.
,
Pierre
,
T.
, and
Briançon
,
J.-L.
,
2004
, “
Low-Frequency Instabilities in a Laboratory Magnetized Plasma Column
,”
Phys. Plasmas
,
11
(
2
), pp.
529
537
.10.1063/1.1636479
66.
Kim
,
E.-J.
, and
Diamond
,
P. H.
,
2003
, “
Zonal Flows and Transient Dynamics of the L–H Transition
,”
Phys. Rev. Lett.
,
90
(
18
), p.
185006
.10.1103/PhysRevLett.90.185006
67.
Macek
,
W. M.
, and
Redaelli
,
S.
,
2000
, “
Estimation of the Entropy of Solar Wind Flow
,”
Phys. Rev. E
,
62
, pp.
6496
6504
.10.1103/PhysRevE.62.6496
68.
Redaelli
,
S.
, and
Macek
,
W. M.
,
2001
, “
Lyapounov Exponent and Entropy of the Solar Wind Flow
,”
Planet. Space Sci.
,
49
, pp.
1211
1218
.10.1016/S0032-0633(01)00062-9
You do not currently have access to this content.