This paper presents a methodology for trajectory planning and tracking control of a tractor with a steerable trailer based on the system’s dynamic model. The theory of differential flatness is used as the basic approach in these developments. Flat outputs are found that linearize the system’s dynamic model using dynamic feedback linearization, a subclass of differential flatness. It is demonstrated that this property considerably simplifies motion planning and the development of controller. Simulation results are presented in the paper, which show that the developed controller has the desirable performance with exponential stability.
Issue Section:
Research Papers
1.
1998,
Robot Motion Planning and Control
(Lecture Notes in Control and Information Sciences
), 1st ed., J.
Laumond
, ed., Springer
, New York
, Chap. 4.2.
Oriolo
, G.
, De Luca
, A.
, and Vendittelli
, M.
, 2002, “WMR Control via Dynamic Feedback Linearization: Design, Implementation, and Experimental Validation
,” IEEE Trans. Control Syst. Technol.
1063-6536, 10
(6
), pp. 835
–852
.3.
Dixon
, W.
, Dawson
, D.
, Zergeroglu
, E.
, and Zhang
, F.
, 2000, “Robust Tracking and Regulation Control for Mobile Robots
,” Int. J. Robust Nonlinear Control
1049-8923, 10
(4
), pp. 199
–216
.4.
Samson
, C.
, and Ait-Abderrahim
, K.
, 1991, “Feedback Control of a Nonholonomic Wheeled Cart in Cartesian Space
,” Proceedings of the IEEE International Conference on Robotics and Automation
, pp. 1136
–1141
.5.
d’Andrea Novel
, B.
, Bastin
, G.
, and Campion
, G.
, 1991, “Modelling and Control of Non Holonomic Wheeled Mobile Robots
,” Proceedings of the IEEE International Conference on Robotics and Automation
, pp. 1130
–1135
.6.
Samson
, C.
, 1993, “Time-Varying Feedback Stabilization of Car-Like Wheeled Mobile Robots
,” Int. J. Robot. Res.
0278-3649, 12
(1
), pp. 55
–64
.7.
d’Andrea Novel
, B.
, Campion
, G.
, and Bastin
, G.
, 1995, “Control of Nonholonomic Wheeled Mobile Robots by State Feedback Linearization
,” Int. J. Robot. Res.
0278-3649, 14
(6
), pp. 543
–559
.8.
Campion
, G.
, Bastin
, G.
, and d’Andrea Novel
, B.
, 1996, “Structural Properties and Classification of Kinematic and Dynamic Models of Wheeled Mobile Robots
,” IEEE Trans. Rob. Autom.
1042-296X, 12
(1
), pp. 47
–61
.9.
Fierro
, R.
, and Lewis
, F. L.
, 1997, “Control of Nonholonomic Mobile Robot: Backstepping Kinematics Into Dynamics
,” J. Rob. Syst.
0741-2223, 14
(3
), pp. 149
–163
.10.
Kim
, B.
, and Tsiotras
, P.
, 2002, “Controllers for Unicycle-Type Wheeled Robots: Theoretical Results and Experimental Validation
,” IEEE Trans. Rob. Autom.
1042-296X, 18
(3
), pp. 294
–307
.11.
Wang
, D.
, and Xu
, G.
, 2003, “Full-State Tracking and Internal Dynamics of Nonholonomic Wheeled Mobile Robots
,” IEEE/ASME Trans. Mechatron.
1083-4435, 8
(2
), pp. 203
–214
.12.
Pathak
, K.
, and Agrawal
, S.
, 2005, “An Integrated Path-Planning and Control Approach for Nonholonomic Unicycles Using Switched Local Potentials
,” IEEE Trans. Rob. Autom.
1042-296X, 21
(6
), pp. 1201
–1208
.13.
Murray
, R.
, and Sastry
, S.
, 1991, “Steering Nonholonomic Systems in Chained Form
,” Proceedings of the IEEE Conference on Decision and Control
, pp. 1121
–1126
.14.
Rouchon
, P.
, Fliess
, M.
, Levine
, J.
, and Martin
, P.
, 1993, “Flatness and Motion Planning: The Car With n Trailers
,” Proceedings of the European Control Conference
, pp. 1518
–1522
.15.
Jiang
, B.
, Liu
, X.
, Qi
, X.
, and Zhang
, S.
, 1994, “Nonlinear Feedback and Robust Tracking Control of Articulated Vehicles
,” Proceedings of the IEEE Conference on Control Applications
, pp. 373
–378
.16.
DeSantis
, R.
, 1994, “Path-Tracking for a Tractor-Trailer-Like Robot
,” Int. J. Robot. Res.
0278-3649, 13
(6
), pp. 533
–543
.17.
Bushnell
, L.
, Tilbury
, D.
, and Sastry
, S.
, 1995, “Steering Three-Input Nonholonomic Systems: The Fire Truck Example
,” Int. J. Robot. Res.
0278-3649, 14
(4
), pp. 366
–381
.18.
Lamiraux
, F.
, and Laumond
, J.
, 1998, “A Practical Approach to Feedback Control for a Mobile Robot With Trailer
,” Proceedings of the IEEE International Conference on Robotics and Automation
, Vol. 4
, pp. 3291
–3296
.19.
Hao
, Y.
, and Agrawal
, S.
, 2005, “Formation Planning and Control of UGVs With Trailers
,” Auton. Rob.
0929-5593, 19
(3
), pp. 257
–270
.20.
Orosco-Guerrero
, R.
, Aranda-Bricaire
, E.
, and Velasco-Villa
, M.
, 2002, “Modeling and Dynamic Feedback Linearization of a Multi-Steered n-Trailer
,” Proceedings of the 2002 IFAC, 15th Triennial Congress
, Barcelona, Spain
.21.
Fliess
, M.
, Levine
, J.
, Martin
, P.
, and Rouchon
, P.
, 1995, “Flatness and Defect of Non-Linear Systems: Introductory Theory and Examples
,” Int. J. Control
0020-7179, 61
(6
), pp. 1327
–1361
.22.
Sira-Ramirez
, H.
, and Agrawal
, S. K.
, 2004, Differential Flat Systems
, 1st ed., Dekker
, New York.23.
Ryu
, J.-C.
, Agrawal
, S. K.
, and Franch
, J.
, 2007, “Motion Planning and Control of a Tractor With a Steerable Trailer Using Differential Flatness
,” Proceedings of the International Design Engineering Technical Conference (IDETC)
, Paper No. DETC2007-35288.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.