Abstract

The efficiency of the high-speed milling process is often limited by the occurrence of chatter. In order to predict the occurrence of chatter, accurate models are necessary. In most models regarding milling, the cutter is assumed to follow a circular tooth path. However, the real tool path is trochoidal in the ideal case, i.e., without vibrations of the tool. Therefore, models using a circular tool path lead to errors, especially when the cutting angle is close to 0 or π radians. An updated model for the milling process is presented which features a model of the undeformed chip thickness and a time-periodic delay. In combination with this tool path model, a nonlinear cutting force model is used, to include the dependency of the chatter boundary on the feed rate. The stability of the milling system, and hence the occurrence of chatter, is investigated using both the traditional and the trochoidal model by means of the semi-discretization method. Due to the combination of this updated tool path model with a nonlinear cutting force model, the periodic solution of this system, representing a chatter-free process, needs to be computed before the stability can be investigated. This periodic solution is computed using a finite difference method for delay-differential equations. Especially for low immersion cuts, the stability lobes diagram (SLD) using the updated model shows significant differences compared to the SLD using the traditional model. Also the use of the nonlinear cutting force model results in significant differences in the SLD compared to the linear cutting force model.

1.
Tlusty
,
J.
, and
Polacek
,
M.
, 1963, “
The Stability of Machine Tools against Self-Excited Vibrations in Machining
,”
Proceedings ASME International Research in Production Engineering
,
Pittsburgh, PA
, pp.
465
474
.
2.
Tobias
,
S. A.
, and
Fishwick
,
W.
, 1958, “
The Chatter of Lathe Tools Under Orthogonal Cutting Conditions
,”
Trans. ASME
0097-6822,
80
, pp.
1079
1088
.
3.
Davies
,
M. A.
,
Pratt
,
J. R.
,
Dutterer
,
B.
, and
Burns
,
T. J.
, 2002, “
Stability Prediction for Low Radial Immersion Milling
,”
J. Manuf. Sci. Eng.
1087-1357,
124
(
2
), pp.
217
225
.
4.
Insperger
,
T.
, and
Stépán
,
G.
, 2004, “
Vibration Frequencies in High-Speed Milling Process or a Positive Answer to Davies Pratt, Dutterer, and Burns
,”
J. Manuf. Sci. Eng.
1087-1357,
126
(
3
), pp.
481
487
.
5.
Stépán
,
G.
,
Insperger
,
T.
, and
Szalai
,
R.
, 2005, “
Delay Parametric Excitation, and the Nonlinear Dynamics of Cutting Processes
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
15
(
9
), pp.
2783
2798
.
6.
Szalai
,
R.
, and
Stépán
,
G.
, 2006, “
Lobes and Lenses in the Stability Chart of Interrupted Turning
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423
1
(3), pp.
205
211
.
7.
Szalai
,
R.
,
Stépán
,
G.
, and
Hogan
,
S. J.
, 2004, “
Global Dynamics of Low Immersion High-Speed Milling
,”
Chaos
1054-1500,
14
(
4
), pp.
1069
1077
.
8.
Altintas
,
Y.
, 2000,
Manufacturing Automation
,
Cambridge University Press
,
Cambridge, UK
.
9.
Insperger
,
T.
,
Stépán
,
G.
,
Bayly
,
P. V.
, and
Mann
,
B. P.
, 2003, “
Multiple Chatter Frequencies in Milling Processes
,”
J. Sound Vib.
0022-460X,
262
(
2
), pp.
333
345
.
10.
Martellotti
,
M. E.
, 1941, “
An Analysis of the Milling Process
,”
Trans. ASME
0097-6822,
63
, pp.
677
700
.
11.
Martellotti
,
M. E.
, 1945, “
An Analysis of the Milling Process. Part 2. Down Milling
,”
Trans. ASME
0097-6822,
67
, pp.
233
251
.
12.
Li
,
H. Z.
,
Liu
,
K.
, and
Li
,
X. P.
, 2001, “
A New Method for Determining the Undeformed Chip Thickness in Milling
,”
J. Mater. Process. Technol.
0924-0136,
113
, pp.
378
384
.
13.
Spiewak
,
S.
, 1994, “
Analytical Modeling of Cutting Point Trajectories in Milling
,”
J. Eng. Ind.
0022-0817,
116
, pp.
440
448
.
14.
Spiewak
,
S.
, 1995, “
An Improved Model of the Chip Thickness in Milling
,”
CIRP Ann.
0007-8506,
44
(
1
), pp.
39
42
.
15.
Altintas
,
Y.
, and
Budak
,
E.
, 1995, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.
0007-8506,
44
(
1
), pp.
357
362
.
16.
Insperger
,
T.
, and
Stépán
,
G.
, 2004, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
(
1
), pp.
117
141
.
17.
Long
,
X. H.
, and
Balachandran
,
B.
, 2004, “
Milling Model With Variable Time Delay
,”
Proceedings ASME International Mechanical Engineering Congress and Exposition
,
Anaheim, CA
, November, Vol.
15
, pp.
933
940
.
18.
Faassen
,
R. P. H.
,
van de Wouw
,
N.
,
Oosterling
,
J. A. J.
, and
Nijmeijer
,
H.
, 2003, “
Prediction of Regenerative Chatter by Modelling and Analysis of High-Speed Milling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
(
14
), pp.
1437
1446
.
19.
Insperger
,
T.
, and
Stépán
,
G.
, 2004, “
Stability Analysis of Turning With Periodic Spindle Speed Modulation via Semi-discretization
,”
J. Vib. Control
1077-5463,
10
, pp.
1835
1855
.
20.
Insperger
,
T.
,
Stépán
,
G.
,
Hartung
,
F.
, and
Turi
,
J.
, 2005, “
State Dependent Regenerative Delay in Milling Processes
,”
Proceedings ASME International Design Engineering Technical Conferences
,
Long Beach, CA
, September, Paper No. DETC2005-85282.
21.
Balachandran
,
B.
, 2001, “
Nonlinear Dynamics of Milling Processes
,”
Philos. Trans. R. Soc. London
0962-8428,
359
(
1781
), pp.
793
819
.
22.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
, 1995,
Applied Nonlinear Dynamics, Analytical, Computational, and Experimental Methods
,
Wiley-International
,
Chichester, UK
.
23.
Parker
,
T. S.
, and
Chua
,
L. O.
, 1989,
Practical Numerical Algorithms for Chaotic Systems
,
Springer
,
Berlin, Germany
.
24.
Faassen
,
R. P. H.
,
van de Wouw
,
N.
,
Oosterling
,
J. A. J.
, and
Nijmeijer
,
H.
, 2005, “
Updated Tool Path Modelling With Periodic Delay for Chatter Prediction in Milling
,”
Proceedings 5th Euromech Nonlinear Dynamics Conference (ENOC)
,
Eindhoven, The Netherlands
, August, Paper No. 08-109, pp.
1080
1089
.
You do not currently have access to this content.