Abstract

Nonlinear intermodal coupling based on internal resonances in MEMS resonators has advanced significantly over the past two decades for various real-world applications. In this study, we demonstrate the existence of various three-mode combination internal resonances between the first five flexural modes of electrostatically actuated flexible–flexible beams and dynamic modal interaction between three modes via internal resonance. We first calculate the natural frequencies of the beam as a function of the stiffnesses of the transverse and rotational springs of the flexible supports, utilizing both analytical formulation and finite element analysis (FEA). Following this, we identify six combination internal resonances among the first five modes and use applied DC voltage to validate the exactness of one commensurable internal resonance condition (ω2=ω5ω4). Subsequently, we studied a detailed forced vibration analysis corresponding to this resonance condition by solving the five-mode coupled governing equations through numerical time integration and the method of multiple scales. The results compellingly exhibit three-mode intermodal coupling among the second, fourth, and fifth modes as a function of excitation amplitude and frequency. Alongside this, intriguing nonlinear phenomena such as threshold behavior, saturation phenomena, and autoparametric instability are observed. Finally, this paper provides a systematic methodology for investigating three-mode combination internal resonances and related nonlinear dynamics, offering significant insights that could be used in observing phonon or mechanical lasing phenomena in MEMS resonators.

References

1.
Kumar
,
P.
,
Pawaskar
,
D. N.
, and
Inamdar
,
M. M.
,
2024
, “
Mass Sensing Based on Nonlinear Intermodal Coupling Via 2:1 Internal Resonance of Electrostatically Actuated Clamped–Clamped Microbeams
,”
Int. J. Dyn. Control
,
12
(
7
), pp.
2128
2143
.10.1007/s40435-023-01355-7
2.
Zhao
,
C.
,
Montaseri
,
M. H.
,
Wood
,
G. S.
,
Pu
,
S. H.
,
Seshia
,
A. A.
, and
Kraft
,
M.
,
2016
, “
A Review on Coupled MEMS Resonators for Sensing Applications Utilizing Mode Localization
,”
Sens. Actuators A: Phys.
,
249
, pp.
93
111
.10.1016/j.sna.2016.07.015
3.
Golnaraghi
,
F.
,
Bahreyni
,
B.
,
Marzouk
,
A.
,
Sarrafan
,
A.
,
Lajimi
,
S. A. M.
,
Pooyanfar
,
O.
, and
Noori
,
N.
,
2020
, “
Vibratory Gyroscope Utilizing the Nonlinear Modal Interaction
,” U.S. Patent Application 16/557,841.
4.
Hajjaj
,
A. Z.
,
Hafiz
,
M. A.
, and
Younis
,
M. I.
,
2017
, “
Mode Coupling and Nonlinear Resonances of MEMS Arch Resonators for Bandpass Filters
,”
Sci. Rep.
,
7
(
1
), p.
41820
.10.1038/srep41820
5.
Kumar
,
P.
,
Pawaskar
,
D. N.
, and
Inamdar
,
M. M.
,
2024
, “
Investigation of a Bandpass Filter Based on Nonlinear Modal Coupling Via 2:1 Internal Resonance of Electrostatically Actuated Clamped-Guided Microbeams
,”
J. Vib. Eng. Technol.
,
12
(
3
), pp.
3783
3796
.10.1007/s42417-023-01084-3
6.
Mahboob
,
I.
,
Flurin
,
E.
,
Nishiguchi
,
K.
,
Fujiwara
,
A.
, and
Yamaguchi
,
H.
,
2011
, “
Interconnect-Free Parallel Logic Circuits in a Single Mechanical Resonator
,”
Nat. Commun.
,
2
(
1
), p.
198
.10.1038/ncomms1201
7.
Lan
,
C.
,
Qin
,
W.
, and
Deng
,
W.
,
2015
, “
Energy Harvesting by Dynamic Unstability and Internal Resonance for Piezoelectric Beam
,”
Appl. Phys. Lett.
,
107
(
9
), p.
093902
.10.1063/1.4930073
8.
Mahboob
,
I.
,
Wilmart
,
Q.
,
Nishiguchi
,
K.
,
Fujiwara
,
A.
, and
Yamaguchi
,
H.
,
2011
, “
Wide-Band Idler Generation in a GaAs Electromechanical Resonator
,”
Phys. Rev. B
,
84
(
11
), p.
113411
.10.1103/PhysRevB.84.113411
9.
Mahboob
,
I.
,
Nishiguchi
,
K.
,
Okamoto
,
H.
, and
Yamaguchi
,
H.
,
2012
, “
Phonon-Cavity Electromechanics
,”
Nat. Phys.
,
8
(
5
), pp.
387
392
.10.1038/nphys2277
10.
Asadi
,
K.
,
Yu
,
J.
, and
Cho
,
H.
,
2018
, “
Nonlinear Couplings and Energy Transfers in Micro- and Nano-Mechanical Resonators: Intermodal Coupling, Internal Resonance and Synchronization
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
376
(
2127
), p.
20170141
.10.1098/rsta.2017.0141
11.
Kumar
,
P.
,
Inamdar
,
M. M.
, and
Pawaskar
,
D. N.
,
2020
, “
Characterisation of the Internal Resonances of a Clamped-Clamped Beam MEMS Resonator
,”
Microsyst. Technol.
,
26
(
6
), pp.
1987
2003
.10.1007/s00542-020-04750-8
12.
Yamaguchi
,
H.
,
2017
, “
GaAs-Based Micro/Nanomechanical Resonators
,”
Semicond. Sci. Technol.
,
32
(
10
), p.
103003
.10.1088/1361-6641/aa857a
13.
Zhou
,
X.
,
Zhao
,
C.
,
Xiao
,
D.
,
Sun
,
J.
,
Sobreviela
,
G.
,
Gerrard
,
D. D.
,
Chen
,
Y.
, et al.,
2019
, “
Dynamic Modulation of Modal Coupling in Microelectromechanical Gyroscopic Ring Resonators
,”
Nat. Commun.
,
10
(
1
), p.
4980
.10.1038/s41467-019-12796-0
14.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
2008
,
Nonlinear Oscillations
,
Wiley
, Weinheim, Germany.
15.
Lenci
,
S.
,
Clementi
,
F.
, and
Warminski
,
J.
,
2015
, “
Nonlinear Free Dynamics of a Two-Layer Composite Beam With Different Boundary Conditions
,”
Meccanica
,
50
(
3
), pp.
675
688
.10.1007/s11012-014-9945-6
16.
Westra
,
H. J. R.
,
Poot
,
M.
,
Van Der Zant
,
H. S. J.
, and
Venstra
,
W. J.
,
2010
, “
Nonlinear Modal Interactions in Clamped-Clamped Mechanical Resonators
,”
Phys. Rev. Lett.
,
105
(
11
), p.
117205
.10.1103/PhysRevLett.105.117205
17.
Samanta
,
C.
,
Yasasvi Gangavarapu
,
P. R.
, and
Naik
,
A. K.
,
2015
, “
Nonlinear Mode Coupling and Internal Resonances in MoS2 Nanoelectromechanical System
,”
Appl. Phys. Lett.
,
107
(
17
), p.
173110
.10.1063/1.4934708
18.
Li
,
L.
,
Zhang
,
Q.
,
Wang
,
W.
, and
Han
,
J.
,
2017
, “
Nonlinear Coupled Vibration of Electrostatically Actuated Clamped–Clamped Microbeams Under Higher-Order Modes Excitation
,”
Nonlinear Dyn.
,
90
(
3
), pp.
1593
1606
.10.1007/s11071-017-3751-3
19.
Lenci
,
S.
,
Clementi
,
F.
,
Kloda
,
L.
,
Warminski
,
J.
, and
Rega
,
G.
,
2021
, “
Longitudinal–Transversal Internal Resonances in Timoshenko Beams With an Axial Elastic Boundary Condition
,”
Nonlinear Dyn.
,
103
(
4
), pp.
3489
3513
.10.1007/s11071-020-05912-z
20.
Younis
,
A. H.
, and
Nayfeh
,
M. I.
,
2003
, “
A Study of the Nonlinear Response of a Resonant Microbeam to an Electric Actuation
,”
Nonlinear Dyn.
,
31
(
1
), pp.
91
117
.10.1023/A:1022103118330
21.
Antonio
,
D.
,
Zanette
,
D. H.
, and
López
,
D.
,
2012
, “
Frequency Stabilization in Nonlinear Micromechanical Oscillators
,”
Nat. Commun.
,
3
(
1
), p.
806
.10.1038/ncomms1813
22.
Pu
,
D.
,
Wei
,
X.
,
Xu
,
L.
,
Jiang
,
Z.
, and
Huan
,
R.
,
2018
, “
Synchronization of Electrically Coupled Micromechanical Oscillators With a Frequency Ratio of 3:1
,”
Appl. Phys. Lett.
,
112
(
1
), p.
013503
.10.1063/1.5000786
23.
Wang
,
X.
,
Huan
,
R.
,
Zhu
,
W.
,
Pu
,
D.
, and
Wei
,
X.
,
2021
, “
Frequency Locking in the Internal Resonance of Two Electrostatically Coupled Micro-Resonators With Frequency Ratio 1:3
,”
Mech. Syst. Signal Process.
,
146
, p.
106981
.10.1016/j.ymssp.2020.106981
24.
Yu
,
J.
,
Asadi
,
K.
,
Brahmi
,
H.
,
Cho
,
H.
,
Nezmi
,
S.
, and
Lee
,
S.
,
2019
, “
Frequency Stabilization in a MEMS Oscillator With 1:2 Internal Resonance
,”
IEEE International Symposium on Inertial Sensors and Systems
(
INERTIAL
), Naples, FL,
Apr. 1–5
, pp.
1
4
.10.1109/ISISS.2019.8739695
25.
Yu
,
J.
,
Kwon
,
H.
,
Vukasin
,
G. D.
,
Kenny
,
T. W.
, and
Cho
,
H.
,
2020
, “
Frequency Stabilization in an Encapsulated High-Q Micromechanical Resonator Via Internal Resonance
,”
IEEE 33rd International Conference on Micro Electro Mechanical Systems
(
MEMS
), Vancouver, BC, Canada,
Jan. 18–22
, pp.
1191
1194
.10.1109/MEMS46641.2020.9056187
26.
Zhang
,
T.
,
Wei
,
X.
,
Jiang
,
Z.
, and
Cui
,
T.
,
2018
, “
Sensitivity Enhancement of a Resonant Mass Sensor Based on Internal Resonance
,”
Appl. Phys. Lett.
,
113
(
22
), p.
223505
.10.1063/1.5057439
27.
Flader
,
I. B.
,
Ahn
,
C. H.
,
Yang
,
Y.
,
Ng
,
E. J.
,
Hong
,
V. A.
,
Baek
,
J.
, and
Kenny
,
T. W.
,
2015
, “
Tunable Quality Factor Through 1:1 Modal Coupling in a Disk Resonator
,”
IEEE Sensors
, Busan, Korea (South),
Nov. 1–4
, pp.
1
4
.10.1109/ICSENS.2015.7370485
28.
Keşkekler
,
A.
,
Shoshani
,
M.
,
Lee
,
O.
,
van der Zant
,
H. S. J.
,
Steeneken
,
P. G.
, and
Alijani
,
F.
,
2021
, “
Tuning Nonlinear Damping in Graphene Nanoresonators by Parametric–Direct Internal Resonance
,”
Nat. Commun.
,
12
(
1
), p.
1099
.10.1038/s41467-021-21334-w
29.
Sarrafan
,
A.
,
Azimi
,
S.
,
Golnaraghi
,
F.
, and
Bahreyni
,
B.
,
2019
, “
A Nonlinear Rate Microsensor Utilising Internal Resonance
,”
Sci. Rep.
,
9
(
1
), p.
8648
.10.1038/s41598-019-44669-3
30.
Chen
,
C.
,
Zanette
,
D. H.
,
Czaplewski
,
D. A.
,
Shaw
,
S.
, and
López
,
D.
,
2017
, “
Direct Observation of Coherent Energy Transfer in Nonlinear Micromechanical Oscillators
,”
Nat. Commun.
,
8
(
1
), pp.
1
7
.10.1038/ncomms15523
31.
Lu
,
K.
,
Zhou
,
X.
,
Li
,
Q.
,
Wu
,
X.
, and
Xiao
,
D.
,
2020
, “
Coherent Phonon Manipulation in a Disk Resonator Gyroscope With Internal Resonance
,” I
EEE International Symposium on Inertial Sensors and Systems
(
INERTIAL
), Hiroshima Japan,
Mar. 23–26
, pp.
1
4
.10.1109/INERTIAL48129.2020.9090063
32.
Luo
,
W.
,
Gao
,
N.
, and
Liu
,
D.
,
2021
, “
Multimode Nonlinear Coupling Induced by Internal Resonance in a Microcantilever Resonator
,”
Nano Lett.
,
21
(
2
), pp.
1062
1067
.10.1021/acs.nanolett.0c04301
33.
Lee
,
J.
,
Shaw
,
S. W.
, and
Feng
,
P. X. L.
,
2022
, “
Phononic Frequency Comb Generation Via 1:1 Mode Coupling in MoS2 2D Nanoelectromechanical Resonators
,” 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (
MEMS
), Tokyo, Japan,
Jan. 9–13
, pp.
503
506
.10.1109/MEMS51670.2022.9699651
34.
Gobat
,
G.
,
Zega
,
V.
,
Fedeli
,
P.
,
Touzé
,
C.
, and
Frangi
,
A.
,
2023
, “
Frequency Combs in a MEMS Resonator Featuring 1:2 Internal Resonance: Ab Initio Reduced Order Modelling and Experimental Validation
,”
Nonlinear Dyn.
,
111
(
4
), pp.
2991
3017
.10.1007/s11071-022-08029-7
35.
Wang
,
X.
,
Yang
,
Q.
,
Huan
,
R.
,
Shi
,
Z.
,
Zhu
,
W.
,
Jiang
,
Z.
,
Deng
,
Z.
, and
Wei
,
X.
,
2022
, “
Frequency Comb in 1:3 Internal Resonance of Coupled Micromechanical Resonators
,”
Appl. Phys. Lett.
,
120
(
17
), p.
173506
.10.1063/5.0091237
36.
Ibrahim
,
R. A.
, and
Barr
,
A. D. S.
,
1975
, “
Autoparametric Resonance in a Structure Containing a Liquid, Part II: Three Mode Interaction
,”
J. Sound Vib.
,
42
(
2
), pp.
181
200
.10.1016/0022-460X(75)90214-X
37.
Ibrahim
,
R. A.
, and
Woodall
,
T. D.
,
1986
, “
Linear and Nonlinear Modal Analysis of Aeroelastic Structural Systems
,”
Comput. Struct.
,
22
(
4
), pp.
699
707
.10.1016/0045-7949(86)90024-6
38.
Ibrahim
,
R. A.
, and
Redayati
,
Z.
,
1986
, “
Stochastic Modal Interaction in Linear and Nonlinear Aeroelastic Structures
,”
Probab. Eng. Mech.
,
1
(
4
), pp.
182
191
.10.1016/0266-8920(86)90011-1
39.
Ibrahim
,
R. A.
, and
Li
,
W.
,
1988
, “
Structural Modal Interaction With Combination Internal Resonance Under Wide-Band Random Excitation
,”
J. Sound Vib.
,
123
(
3
), pp.
473
495
.10.1016/S0022-460X(88)80164-0
40.
Nayfeh
,
A. H.
,
1983
, “
The Response of Multidegree-of-Freedom Systems With Quadratic Non-Linearities to a Harmonic Parametric Resonance
,”
J. Sound Vib.
,
90
(
2
), pp.
237
244
.10.1016/0022-460X(83)90531-X
41.
Bux
,
S. L.
, and
Roberts
,
J. W.
,
1986
, “
Non-Linear Vibratory Interactions in Systems of Coupled Beams
,”
J. Sound Vib.
,
104
(
3
), pp.
497
520
.10.1016/0022-460X(86)90304-4
42.
Cartmell
,
M. P.
, and
Roberts
,
J. W.
,
1988
, “
Simultaneous Combination Resonances in an Autoparametrically Resonant System
,”
J. Sound Vib.
,
123
(
1
), pp.
81
101
.10.1016/S0022-460X(88)80080-4
43.
Nayfeh
,
T. A.
,
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1994
, “
A Theoretical and Experimental Investigation of a Three-Degree-of-Freedom Structure
,”
Nonlinear Dyn.
,
6
(
3
), pp.
353
374
.10.1007/BF00053391
44.
Ashworth
,
R. P.
, and
Barr
,
A. D. S.
,
1987
, “
The Resonances of Structures With Quadratic Inertial Non-Linearity Under Direct and Parametric Harmonic Excitation
,”
J. Sound Vib.
,
118
(
1
), pp.
47
68
.10.1016/0022-460X(87)90254-9
45.
Sridhar
,
S.
,
Mook
,
D. T.
, and
Nayfeh
,
A. H.
,
1975
, “
Non-Linear Resonances in the Forced Responses of Plates, Part 1: Symmetric Responses of Circular Plates
,”
J. Sound Vib.
,
41
(
3
), pp.
359
373
.10.1016/S0022-460X(75)80182-9
46.
Ibrahim
,
R. A.
,
Afaneh
,
A. A.
, and
Lee
,
B. H.
,
1993
, “
Structural Modal Multifurcation With International Resonance: Part 1—Deterministic Approach
,”
ASME J. Vib. Acoust.
,
115
(
2
), pp.
182
192
.10.1115/1.2930329
47.
Lee
,
W. K.
, and
Soh
,
K. Y.
,
1994
, “
Nonlinear Analysis of the Forced Response of a Beam With Three Mode Interaction
,”
Nonlinear Dyn.
,
6
(
1
), pp.
49
68
.10.1007/BF00045432
48.
Lee
,
W. K.
, and
Kim
,
C. H.
,
1995
, “
Combination Resonances of a Circular Plate With Three-Mode Interaction
,”
ASME J. Appl. Mech.
,
62
(
4
), pp.
1015
1022
.10.1115/1.2896037
49.
Arafat
,
H. N.
, and
Nayfeh
,
A. H.
,
2004
, “
Combination Internal Resonances in Heated Annular Plates
,”
Nonlinear Dyn.
,
37
(
4
), pp.
285
306
.10.1023/B:NODY.0000045542.48960.33
50.
Mahboob
,
I.
,
Nishiguchi
,
K.
,
Fujiwara
,
A.
, and
Yamaguchi
,
H.
,
2013
, “
Phonon Lasing in an Electromechanical Resonator
,”
Phys. Rev. Lett.
,
110
(
12
), p.
127202
.10.1103/PhysRevLett.110.127202
51.
De Alba
,
R.
,
Massel
,
F.
,
Storch
,
I. R.
,
Abhilash
,
T. S.
,
Hui
,
A.
,
McEuen
,
P. L.
,
Craighead
,
H. G.
, and
Parpia
,
J. M.
,
2016
, “
Tunable Phonon-Cavity Coupling in Graphene Membranes
,”
Nat. Nanotechnol.
,
11
(
9
), pp.
741
746
.10.1038/nnano.2016.86
52.
Ganesan
,
A.
,
Do
,
C.
, and
Seshia
,
A.
,
2016
, “
Observation of Three-Mode Parametric Instability in a Micromechanical Resonator
,”
Appl. Phys. Lett.
,
109
(
19
), p.
193501
.10.1063/1.4967007
53.
Ganesan
,
A.
, and
Seshia
,
A.
,
2018
, “
Coexistence of Multiple Multimode Nonlinear Mixing Regimes in a Microelectromechanical Device
,”
Appl. Phys. Lett.
,
112
(
8
), p.
084102
.10.1063/1.5009705
54.
Ganesan
,
A.
,
Do
,
C.
, and
Seshia
,
A.
,
2017
, “
Phononic Frequency Comb Via Intrinsic Three-Wave Mixing
,”
Phys. Rev. Lett.
,
118
(
3
), p.
033903
.10.1103/PhysRevLett.118.033903
55.
Ganesan
,
A.
,
Do
,
C.
, and
Seshia
,
A.
,
2018
, “
Phononic Frequency Comb Via Three-Mode Parametric Resonance
,”
Appl. Phys. Lett.
,
112
(
2
), p.
021906
.10.1063/1.5003133
56.
Kumar
,
P.
,
Muralidharan
,
B.
,
Pawaskar
,
D. N.
, and
Inamdar
,
M. M.
,
2022
, “
Investigation of Phonon Lasing Like Auto-Parametric Instability Between 1-D Flexural Modes of Electrostatically Actuated Microbeams
,”
Int. J. Mech. Sci.
,
220
, p.
107135
.10.1016/j.ijmecsci.2022.107135
57.
Algamili
,
A. S.
,
Khir
,
M. H. M.
,
Dennis
,
J. O.
,
Ahmed
,
A. Y.
,
Alabsi
,
S. S.
,
Hashwan
,
S. S. B.
, and
Junaid
,
M. M.
,
2021
, “
A Review of Actuation and Sensing Mechanisms in MEMS-Based Sensor Devices
,”
Nanoscale Res. Lett.
,
16
(
1
), p.
16
.10.1186/s11671-021-03481-7
58.
Younis
,
M. I.
,
2011
,
MEMS Linear and Nonlinear Statics and Dynamics
, Vol.
20
,
Springer Science
, New York.
59.
Lenci
,
S.
,
Clementi
,
F.
, and
Rega
,
G.
,
2017
, “
Comparing Nonlinear Free Vibrations of Timoshenko Beams With Mechanical or Geometric Curvature Definition
,”
Procedia IUTAM
,
20
, pp.
34
41
.10.1016/j.piutam.2017.03.006
60.
Kumar
,
P.
,
Pawaskar
,
D. N.
, and
Inamdar
,
M. M.
,
2022
, “
Investigating Internal Resonances and 3:1 Modal Interaction in an Electrostatically Actuated Clamped-Hinged Microbeam
,”
Meccanica
,
57
(
1
), pp.
143
163
.10.1007/s11012-021-01416-1
61.
Kumar
,
P.
,
Inamdar
,
M. M.
, and
Pawaskar
,
D. N.
,
2020
, “
Investigation of 3:1 Internal Resonance of Electrostatically Actuated Microbeams With Flexible Supports
,”
ASME
Paper No. DETC2020-22050.10.1115/DETC2020-22050
62.
Alkharabsheh
,
S. A.
, and
Younis
,
M. I.
,
2013
, “
Dynamics of MEMS Arches of Flexible Supports
,”
J. Microelectromech. Syst.
,
22
(
1
), pp.
216
224
.10.1109/JMEMS.2012.2226926
63.
Al Hafiz
,
M. A.
,
Tella
,
S.
,
Alcheikh
,
N.
,
Fariborzi
,
H.
, and
Younis
,
M. I.
,
2018
, “
Axially Modulated Arch Resonator for Logic and Memory Applications
,”
Mechatronics
,
56
, pp.
254
260
.10.1016/j.mechatronics.2018.01.004
You do not currently have access to this content.