Abstract

A wide range of mechanical systems have gaps, cracks, intermittent contact or other geometrical discontinuities while simultaneously experiencing Coulomb friction. A piecewise linear model with discontinuous force elements is discussed in this paper that has the capability to accurately emulate the behavior of such mechanical assemblies. The mathematical formulation of the model is standardized via a universal differential inclusion and its behavior, in different scenarios, is studied. In addition to the compatibility of the proposed model with numerous industrial systems, the model also bears significant scientific value since it can demonstrate a wide spectrum of motions, ranging from periodic to chaotic. Furthermore, it is demonstrated that this class of models can generate a rare type of motion, called weakly chaotic motion. After their detailed introduction and analysis, an efficient hybrid symbolic-numeric computational method is introduced that can accurately obtain the arbitrary response of this class of nonlinear models. The proposed method is capable of treating high dimensional systems and its proposition omits the need for utilizing model reduction techniques for a wide range of problems. In contrast to the existing literature focused on improving the computational performance when analyzing these systems when there is a periodic response, this method is able to capture transient and nonstationary dynamics and is not restricted to only steady-state periodic responses.

References

1.
Mitra
,
M.
, and
Epureanu
,
B. I.
,
2019
, “
Dynamic Modeling and Projection-Based Reduction Methods for Bladed Disks With Nonlinear Frictional and Intermittent Contact Interfaces
,”
ASME Appl. Mech. Rev.
,
71
(
5
), p.
050803
.10.1115/1.4043083
2.
Öktem
,
H.
,
2005
, “
A Survey on Piecewise-Linear Models of Regulatory Dynamical Systems
,”
Nonlinear Anal.: Theory, Methods Appl.
,
63
(
3
), pp.
336
349
.10.1016/j.na.2005.04.041
3.
Zucca
,
S.
, and
Epureanu
,
B. I.
,
2018
, “
Reduced Order Models for Nonlinear Dynamic Analysis of Structures With Intermittent Contacts
,”
J. Vib. Control
,
24
(
12
), pp.
2591
2604
.10.1177/1077546316689214
4.
Zucca
,
S.
, and
Epureanu
,
B.
,
2014
, “
Bi-Linear Reduced-Order Models of Structures With Friction Intermittent Contacts
,”
Nonlinear Dyn.
,
77
(
3
), pp.
1055
1067
.10.1007/s11071-014-1363-8
5.
Kim
,
Y. B.
, and
Noah
,
S. T.
,
1991
, “
Stability and Bifurcation Analysis of Oscillators With Piecewise-Linear Characteristics: A General Approach
,”
ASME J. Appl. Mech.
,
58
(
2)
, pp.
545
553
.10.1115/1.2897218
6.
Pasternak
,
E.
,
Dyskin
,
A.
, and
Qi
,
C.
,
2020
, “
Shifted Impact Oscillator: Tuned Multiple Resonances and Step Load
,”
Int. J. Eng. Sci.
,
147
, p.
103203
.10.1016/j.ijengsci.2019.103203
7.
Guzek
,
A.
,
Dyskin
,
A. V.
,
Pasternak
,
E.
, and
Shufrin
,
I.
,
2016
, “
Asymptotic Analysis of Bilinear Oscillators With Preload
,”
Int. J. Eng. Sci.
,
106
, pp.
125
141
.10.1016/j.ijengsci.2016.05.006
8.
Li
,
Z.
,
Ouyang
,
H.
, and
Guan
,
Z.
,
2017
, “
Friction-Induced Vibration of an Elastic Disc and a Moving Slider With Separation and Reattachment
,”
Nonlinear Dyn.
,
87
(
2
), pp.
1045
1067
.10.1007/s11071-016-3097-2
9.
Marton
,
L.
, and
Lantos
,
B.
,
2007
, “
Modeling, Identification, and Compensation of Stick-Slip Friction
,”
IEEE Trans. Ind. Electron.
,
54
(
1
), pp.
511
521
.10.1109/TIE.2006.888804
10.
Natsiavas
,
S.
,
1998
, “
Stability of Piecewise Linear Oscillators With Viscous and Dry Friction Damping
,”
J. Sound Vib.
,
217
(
3
), pp.
507
522
.10.1006/jsvi.1998.1768
11.
Li
,
Y.
, and
Feng
,
Z.
,
2004
, “
Bifurcation and Chaos in Friction-Induced Vibration
,”
Commun. Nonlinear Sci. Numer. Simul.
,
9
(
6
), pp.
633
647
.10.1016/S1007-5704(03)00058-3
12.
Saito
,
A.
,
Umemoto
,
J.
,
Noguchi
,
K.
,
Tien
,
M.-H.
, and
D'Souza
,
K.
,
2020
, “
Experimental Forced Response Analysis of Two-Degree-of-Freedom Piecewise-Linear Systems With a Gap
,”
ASME
Paper No. V007T07A019.10.1115/V007T07A019
13.
Bagley
,
R. L.
, and
Torvik
,
P.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
.10.1122/1.549724
14.
Homaeinezhad
,
M.
, and
Shahhosseini
,
A.
,
2020
, “
Fractional Order Actuation Systems: Theoretical Foundation and Application in Feedback Control of Mechanical Systems
,”
Appl. Math. Modell.
,
87
, pp.
625
639
.10.1016/j.apm.2020.06.030
15.
Gaul
,
L.
, and
Nitsche
,
R.
,
2001
, “
The Role of Friction in Mechanical Joints
,”
ASME Appl. Mech. Rev.
,
54
(
2)
, pp.
93
106
.10.1115/1.3097294
16.
Sun
,
H.
,
Ma
,
C.
, and
Bernitsas
,
M. M.
,
2018
, “
Hydrokinetic Power Conversion Using Flow Induced Vibrations With Nonlinear (Adaptive Piecewise-Linear) Springs
,”
Energy
,
143
, pp.
1085
1106
.10.1016/j.energy.2017.10.140
17.
Maistrenko
,
Y.
, and
Kapitaniak
,
T.
,
1996
, “
Different Types of Chaos Synchronization in Two Coupled Piecewise Linear Maps
,”
Phys. Rev. E
,
54
(
4
), p.
3285
.10.1103/PhysRevE.54.3285
18.
Tien
,
M.-H.
, and
D'Souza
,
K.
,
2019
, “
Analyzing Bilinear Systems Using a New Hybrid Symbolic-Numeric Computational Method
,”
ASME J. Vib. Acoust.
,
141
(
3
), p.
031008
.10.1115/1.4042520
19.
Hsu
,
C.-L.
, and
Tien
,
M.-H.
,
2023
, “
Parametric Analysis of the Nonlinear Dynamics of a Cracked Cantilever Beam
,”
ASME J. Vib. Acoust.
,
145
(
3
), p.
031004
.10.1115/1.4056644
20.
Ewins
,
D. J.
,
2000
,
Modal Testing: Theory and Practice
,
Research Studies Press
,
Baldock, UK
.
21.
Nakhla
,
M.
, and
Vlach
,
J.
,
1976
, “
A Piecewise Harmonic Balance Technique for Determination of Periodic Response of Nonlinear Systems
,”
IEEE Trans. Circuits Syst.
,
23
(
2
), pp.
85
91
.10.1109/TCS.1976.1084181
22.
Lau
,
S. L.
, and
Zhang
,
W.-S.
,
1992
, “
Nonlinear Vibrations of Piecewise-Linear Systems by Incremental Harmonic Balance Method
,”
ASME J. Appl. Mech.
,
59
(
1
), pp.
153
160
.10.1115/1.2899421
23.
Xu
,
L.
,
Lu
,
M.
, and
Cao
,
Q.
,
2002
, “
Nonlinear Vibrations of Dynamical Systems With a General Form of Piecewise-Linear Viscous Damping by Incremental Harmonic Balance Method
,”
Phys. Lett. A
,
301
(
1–2
), pp.
65
73
.10.1016/S0375-9601(02)00960-X
24.
Saito
,
A.
,
Castanier
,
M. P.
,
Pierre
,
C.
, and
Poudou
,
O.
,
2009
, “
Efficient Nonlinear Vibration Analysis of the Forced Response of Rotating Cracked Blades
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
1
), p.
011005
.10.1115/1.3007908
25.
Tien
,
M.-H.
, and
D'Souza
,
K.
,
2017
, “
A Generalized Bilinear Amplitude and Frequency Approximation for Piecewise-Linear Nonlinear Systems With Gaps or Prestress
,”
Nonlinear Dyn.
,
88
(
4
), pp.
2403
2416
.10.1007/s11071-017-3385-5
26.
Tien
,
M.-H.
,
Hu
,
T.
, and
D'Souza
,
K.
,
2018
, “
Generalized Bilinear Amplitude Approximation and X-XR for Modeling Cyclically Symmetric Structures With Cracks
,”
ASME J. Vib. Acoust.
,
140
(
4
), p.
041012
.10.1115/1.4039296
27.
Tien
,
M.-H.
,
Hu
,
T.
, and
D'Souza
,
K.
,
2019
, “
Statistical Analysis of the Nonlinear Response of Bladed Disks With Mistuning and Cracks
,”
AIAA J.
,
57
(
11
), pp.
4966
4977
.10.2514/1.J058190
28.
Altamirano
,
G. L.
,
Tien
,
M.-H.
, and
D'Souza
,
K.
,
2021
, “
A New Method to Find the Forced Response of Nonlinear Systems With Dry Friction
,”
ASME J. Comput. Nonlinear Dyn.
16(6), p.
061002
.10.1115/1.4050686
29.
Filippov
,
A.
,
1988
,
Differential Equations With Discontinuous Righthand Sides
,
Springer
,
Dordrecht, The Netherlands
.
30.
Butcher
,
J.
,
1996
, “
A History of Runge-Kutta Methods
,”
Appl. Numer. Math.
,
20
(
3
), pp.
247
260
.10.1016/0168-9274(95)00108-5
31.
Popp
,
K.
, and
Stelter
,
P.
,
1990
, “
Stick-Slip Vibrations and Chaos
,”
Philos. Trans.: Phys. Sci. Eng.
,
332
(
1624
), pp.
89
105
.10.1098/rsta.1990.0102
32.
Karnopp
,
D.
,
1985
, “
Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
107
(
1
), pp.
100
103
.10.1115/1.3140698
33.
Mora
,
P.
, and
Place
,
D.
,
1994
, “
Simulation of the Frictional Stick-Slip Instability
,”
Pure Appl. Geophys.
,
143
(
1
), pp.
61
87
.10.1007/BF00874324
34.
Varsakelis
,
C.
, and
Anagnostidis
,
P.
,
2016
, “
On the Susceptibility of Numerical Methods to Computational Chaos and Superstability
,”
Commun. Nonlinear Sci. Numer. Simul.
,
33
, pp.
118
132
.10.1016/j.cnsns.2015.09.007
35.
Stefani
,
G.
,
De Angelis
,
M.
, and
Andreaus
,
U.
,
2021
, “
Numerical Study on the Response Scenarios in a Vibro-Impact Single-Degree-of-Freedom Oscillator With Two Unilateral Dissipative and Deformable Constraints
,”
Commun. Nonlinear Sci. Numer. Simul.
,
99
, p.
105818
.10.1016/j.cnsns.2021.105818
36.
Tien
,
M.-H.
, and
D'Souza
,
K.
,
2019
, “
Transient Dynamic Analysis of Cracked Structures With Multiple Contact Pairs Using Generalized HSNC
,”
Nonlinear Dyn.
,
96
(
2
), pp.
1115
1131
.10.1007/s11071-019-04844-7
37.
Acary
,
V.
, and
Brogliato
,
B.
,
2008
,
Numerical Methods for Nonsmooth Dynamical Systems
,
Springer-Verlag
,
Berlin/Heidelberg
.
38.
Piiroinen
,
P. T.
, and
Kuznetsov
,
Y. A.
,
2008
, “
An Event-Driven Method to Simulate Filippov Systems With Accurate Computing of Sliding Motions
,”
ACM Trans. Math. Software (TOMS)
,
34
(
3
), pp.
1
24
.10.1145/1356052.1356054
39.
Bernardo
,
M.
,
Budd
,
C.
,
Champneys
,
A. R.
, and
Kowalczyk
,
P.
,
2008
,
Piecewise-Smooth Dynamical Systems: Theory and Applications
, Vol.
163
,
Springer Science & Business Media
, Berlin.
40.
Fu
,
Z.-F.
, and
He
,
J.
,
2001
,
Modal Analysis
,
Elsevier,
Dordrecht, The Netherlands
.
41.
Zaslavskiî
,
G. M.
,
Sagdeev
,
R. Z.
,
Usikov
,
D. A.
, and
Chernikov
,
A. A.
,
2009
,
Weak Chaos and Quasi-Regular Patterns
,
Cambridge University Press
, Cambridge, UK.
42.
Mehrdad Pourkiaee
,
S.
, and
Zucca
,
S.
,
2019
, “
A Reduced Order Model for Nonlinear Dynamics of Mistuned Bladed Disks With Shroud Friction Contacts
,”
AMSE J. Eng. Gas Turbines Power
,
141
(
1
), p.
011031
.10.1115/1.4041653
43.
Krack
,
M.
,
Panning-von Scheidt
,
L.
,
Wallaschek
,
J.
,
Siewert
,
C.
, and
Hartung
,
A.
,
2013
, “
Reduced Order Modeling Based on Complex Nonlinear Modal Analysis and Its Application to Bladed Disks With Shroud Contact
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102502
.10.1115/1.4025002
44.
Zucca
,
S.
,
Firrone
,
C. M.
, and
Gola
,
M.
,
2013
, “
Modeling Underplatform Dampers for Turbine Blades: A Refined Approach in the Frequency Domain
,”
J. Vib. Control
,
19
(
7
), pp.
1087
1102
.10.1177/1077546312440809
45.
Laxalde
,
D.
,
Thouverez
,
F.
, and
Lombard
,
J.-P.
,
2010
, “
Forced Response Analysis of Integrally Bladed Disks With Friction Ring Dampers
,”
ASME J. Vib. Acoust.
,
132
(
1
), p.
011013
.10.1115/1.4000763
46.
D'Souza
,
K. X.
, and
Epureanu
,
B. I.
,
2012
, “
A Statistical Characterization of the Effects of Mistuning in Multistage Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
012503
.10.1115/1.4004153
47.
Kurstak
,
E.
, and
D'Souza
,
K.
,
2020
, “
A Statistical Characterization of the Effects and Interactions of Small and Large Mistuning on Multistage Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
142
(
4
), p.
041015
.10.1115/1.4045023
48.
D'Souza
,
K.
,
Jung
,
C.
, and
Epureanu
,
B. I.
,
2013
, “
Analyzing Mistuned Multi-Stage Turbomachinery Rotors With Aerodynamic Effects
,”
J. Fluids Struct.
,
42
, pp.
388
400
.10.1016/j.jfluidstructs.2013.07.007
49.
Kurstak
,
E.
, and
D'Souza
,
K.
,
2018
, “
Multistage Blisk and Large Mistuning Modeling Using Fourier Constraint Modes and Prime
,”
ASME J. Eng. Gas Turbines Power
,
140
(
7
), p.
072505
.10.1115/1.4038613
50.
Kurstak
,
E.
,
Wilber
,
R.
, and
D'Souza
,
K.
,
2019
, “
Parametric Reduced Order Models for Bladed Disks With Mistuning and Varying Operational Speed
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p.
051018
.10.1115/1.4041204
51.
Balageas
,
D.
,
Fritzen
,
C.-P.
, and
Güemes
,
A.
,
2010
,
Structural Health Monitoring
, Vol.
90
,
Wiley
, Hoboken, NJ.
52.
Baek
,
S.
, and
Epureanu
,
B.
,
2020
, “
Contact Model Identification for Friction Ring Dampers in Blisks With Reduced Order Modeling
,”
Int. J. Non-Linear Mech.
,
120
, p.
103374
.10.1016/j.ijnonlinmec.2019.103374
53.
Friswell
,
M. I.
, and
Penny
,
J. E.
,
2002
, “
Crack Modeling for Structural Health Monitoring
,”
Struct. Health Monit.
,
1
(
2
), pp.
139
148
.10.1177/1475921702001002002
You do not currently have access to this content.