Abstract

Periodic and period-doubling vibrations in a gear transmission system subjected to forced excitations with multipiecewise linear functions are investigated in this work by using the incremental harmonic balance (IHB) method. The nonlinear ordinary differential equations that govern vibration of the gear transmission system are formulated by employing the Newton's second law. Analytical results reveal abundant interesting phenomena, including jumps, bifurcations, softening-spring behaviors, and primary, super-harmonic, and subharmonic resonances, which have not been exhibited in existing investigations on nonlinear vibrations of gear transmission systems. Nonlinear phenomena and resonances of the gear transmission system are revealed by considering different numbers of degrees-of-freedom of the system. The bifurcations containing saddle-node, period-doubling, and Hopf bifurcations are observed in frequency response curves. The period-doubling phenomena are characterized by phase-plane diagrams and Fourier spectra. Further, analytical results obtained by the IHB method match very well with those from numerical integration.

References

1.
Wang
,
J. J.
,
Li
,
R. F.
, and
Peng
,
X. H.
,
2003
, “
Survey of Nonlinear Vibration of Gear Transmission Systems
,”
ASME Appl. Mech. Rev.
,
56
(
3
), pp.
309
329
.10.1115/1.1555660
2.
Liang
,
X. H.
,
Zuo
,
M. J.
, and
Feng
,
Z. P.
,
2018
, “
Dynamic Modeling of Gearbox Faults: A Review
,”
Mech. Syst. Signal Process.
,
98
, pp.
852
876
.10.1016/j.ymssp.2017.05.024
3.
Cooley
,
C. G.
, and
Parker
,
R. G.
,
2014
, “
A Review of Planetary and Epicyclic Gear Dynamics and Vibrations Research
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040804
.10.1115/1.4027812
4.
Sheng
,
L.
,
Li
,
W.
,
Wang
,
Y.
,
Fan
,
M.
, and
Yang
,
X.
,
2019
, “
Nonlinear Dynamic Analysis and Chaos Control of Multi-Freedom Semi-Direct Gear Drive System in Coal Cutters
,”
Mech. Syst. Signal Process.
,
116
, pp.
62
77
.10.1016/j.ymssp.2018.06.043
5.
Li
,
Z. X.
, and
Peng
,
Z.
,
2016
, “
Nonlinear Dynamic Response of a Multi-Degree of Freedom Gear System Dynamic Model Coupled With Tooth Surface Characters: A Case Study on Coal Cutters
,”
Nonlinear Dyn.
,
84
(
1
), pp.
271
286
.10.1007/s11071-015-2475-5
6.
Li
,
Z.
,
Zhu
,
C.
,
Liu
,
H.
, and
Gu
,
Z.
,
2020
, “
Mesh Stiffness and Nonlinear Dynamic Response of a Spur Gear Pair Considering Tribo-Dynamic Effect
,”
Mech. Mach. Theory
,
153
, p.
103989
.10.1016/j.mechmachtheory.2020.103989
7.
Li
,
S.
, and
Kahraman
,
A.
,
2013
, “
A Tribo-Dynamic Model of a Spur Gear Pair
,”
J. Sound Vib.
,
332
(
20
), pp.
4963
4978
.10.1016/j.jsv.2013.04.022
8.
Jiang
,
Y.
,
Zhu
,
H.
,
Li
,
Z.
, and
Peng
,
Z.
,
2016
, “
The Nonlinear Dynamics Response of Cracked Gear System in a Coal Cutter Taking Environmental Multi-Frequency Excitation Forces Into Consideration
,”
Nonlinear Dyn.
,
84
(
1
), pp.
203
222
.10.1007/s11071-015-2409-2
9.
Chen
,
Z.
,
Ning
,
J.
,
Wang
,
K.
, and
Zhai
,
W.
,
2021
, “
An Improved Dynamic Model of Spur Gear Transmission Considering Coupling Effect Between Gear Neighboring Teeth
,”
Nonlinear Dyn.
,
106
(
1
), pp.
339
357
.10.1007/s11071-021-06852-y
10.
Litak
,
G.
, and
Friswell
,
M. I.
,
2005
, “
Dynamics of a Gear System With Faults in Meshing Stiffness
,”
Nonlinear Dyn.
,
41
(
4
), pp.
415
421
.10.1007/s11071-005-1398-y
11.
Parker
,
R. G.
,
Vijayakar
,
S. M.
, and
Imajo
,
T.
,
2000
, “
Non-Linear Dynamic Response of a Spur Gear Pair: Modelling and Experimental Comparison
,”
J. Sound Vib.
,
237
(
3
), pp.
435
455
.10.1006/jsvi.2000.3067
12.
Dong
,
J.
,
Wang
,
S.
,
Lin
,
H.
, and
Wang
,
Y.
,
2016
, “
Dynamic Modeling of Double-Helical Gear With Timoshenko Beam Theory and Experiment Verification
,”
Adv. Mech. Eng.
,
8
(
5
), pp.
1
14
.10.1177/168781401664723
13.
Theodossiades
,
S.
, and
Natsiavas
,
S.
,
2000
, “
Non-Linear Dynamics of Gear-Pair System With Periodic Stiffness and Backlash
,”
J. Sound Vib.
,
229
(
2
), pp.
287
310
.10.1006/jsvi.1999.2490
14.
Moradi
,
H.
, and
Salarieh
,
H.
,
2012
, “
Analysis of Nonlinear Oscillations in Spur Gear Pairs With Approximated Modelling of Backlash Nonlinearity
,”
Mech. Mach. Theory
,
51
, pp.
14
31
.10.1016/j.mechmachtheory.2011.12.005
15.
Guo
,
Y.
, and
Parker
,
R. G.
,
2012
, “
Dynamic Analysis of Planetary Gears With Bearing Clearance
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
4
), p.
041002
.10.1115/1.4005929
16.
Kahraman
,
A.
, and
Singh
,
R.
,
1990
, “
Non-Linear Dynamics of a Spur Gear Pair
,”
J. Sound Vib.
,
142
(
1
), pp.
49
75
.10.1016/0022-460X(90)90582-K
17.
Cao
,
Z.
,
Chen
,
Z. G.
, and
Jiang
,
H. J.
,
2020
, “
Nonlinear Dynamics of a Spur Gear Pair With Force-Dependent Mesh Stiffness
,”
Nonlinear Dyn.
,
99
(
2
), pp.
1227
1241
.10.1007/s11071-019-05348-0
18.
Guilbault
,
R.
,
Lalonde
,
S.
, and
Thomas
,
M.
,
2012
, “
Nonlinear Damping Calculation in Cylindrical Gear Dynamic Modeling
,”
J. Sound Vib.
,
331
(
9
), pp.
2110
2128
.10.1016/j.jsv.2011.12.025
19.
Mo
,
S.
,
Zhang
,
Y.
,
Song
,
Y.
,
Song
,
W.
, and
Huang
,
Y.
,
2022
, “
Nonlinear Vibration and Primary Resonance Analysis of Non-Orthogonal Face Gear-Rotor-Bearing System
,”
Nonlinear Dyn.
,
108
(
4
), pp.
3367
3389
.10.1007/s11071-022-07432-4
20.
Sun
,
Z.
,
Chen
,
S.
,
Hu
,
Z.
, and
Lei
,
D.
,
2022
, “
Vibration Response Analysis of a Gear-Rotor-Bearing System Considering Steady-State Temperature
,”
Nonlinear Dyn.
,
107
(
1
), pp.
477
493
.10.1007/s11071-021-07024-8
21.
Wang
,
S.
, and
Zhu
,
R.
,
2021
, “
Nonlinear Dynamic Analysis of GTF Gearbox Under Friction Excitation With Vibration Characteristics Recognition and Control in Frequency Domain
,”
Mech. Syst. Signal Process.
,
151
, p.
107373
.10.1016/j.ymssp.2020.107373
22.
Lin
,
C.
,
Wang
,
Y.
,
Hu
,
Y.
,
Ran
,
G.
, and
Yu
,
Y.
,
2022
, “
Nonlinear Dynamic Analysis of Eccentric Curve-Face Gear Transmission System
,”
J. Sound Vib.
,
520
, p.
116596
.10.1016/j.jsv.2021.116596
23.
Zhang
,
Q.
,
Wang
,
X.
,
Wu
,
S.
,
Cheng
,
S.
, and
Xie
,
F.
,
2022
, “
Nonlinear Characteristics of a Multi-Degree-of-Freedom Wind Turbine's Gear Transmission System Involving Friction
,”
Nonlinear Dyn.
,
107
(
4
), pp.
3313
3338
.10.1007/s11071-021-07092-w
24.
Lau
,
S. L.
, and
Cheung
,
Y. K.
,
1981
, “
Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic Systems
,”
ASME J. Appl. Mech.
,
48
(
4
), pp.
959
964
.10.1115/1.3157762
25.
Cheung
,
Y. K.
, and
Lau
,
S. L.
,
1982
, “
Incremental Timespace Finite Strip Method for Non-Linear Structural Vibrations
,”
Earthquake Eng. Struct. Dyn.
,
10
(
2
), pp.
239
253
.10.1002/eqe.4290100206
26.
Lau
,
S. L.
,
Cheung
,
Y. K.
, and
Wu
,
S. Y.
,
1982
, “
A Variable Parameter Incrementation Method for Dynamic Instability of Linear and Nonlinear Elastic Systems
,”
ASME J. Appl. Mech.
,
49
(
4
), pp.
849
853
.10.1115/1.3162626
27.
Lau
,
S. L.
, and
Zhang
,
W.-S.
,
1992
, “
Nonlinear Vibrations of Piecewise-Linear Systems by Incremental Harmonic Balance Method
,”
ASME J. Appl. Mech.
,
59
(
1
), pp.
153
160
.10.1115/1.2899421
28.
Shen
,
Y. J.
,
Yang
,
S. P.
, and
Liu
,
X. D.
,
2006
, “
Nonlinear Dynamics of a Spur Gear Pair With Time-Varying Stiffness and Backlash Based on Incremental Harmonic Balance Method
,”
Int. J. Mech. Sci.
,
48
(
11
), pp.
1256
1263
.10.1016/j.ijmecsci.2006.06.003
29.
Kahraman
,
A.
, and
Singh
,
R.
,
1991
, “
Non-Linear Dynamics of a Geared Rotor-Bearing System With Multiple Clearances
,”
J. Sound Vib.
,
144
(
3
), pp.
469
506
.10.1016/0022-460X(91)90564-Z
30.
Kahraman
,
A.
, and
Blankenship
,
G.
,
1996
, “
Interactions Between Commensurate Parametric and Forcing Excitations in a System With Clearence
,”
J. Sound Vib.
,
194
(
3
), pp.
317
336
.10.1006/jsvi.1996.0361
31.
Choi
,
Y.
, and
Noah
,
S.
,
1988
, “
Forced Periodic Vibration of Unsymmetric Piecewise-Linear Systems
,”
J. Sound Vib.
,
121
(
1
), pp.
117
126
.10.1016/S0022-460X(88)80064-6
32.
Zhou
,
S.
,
Song
,
G.
,
Li
,
Y.
,
Huang
,
Z.
, and
Ren
,
Z.
,
2019
, “
Dynamic and Steady Analysis of a 2-DOF Vehicle System by Modified Incremental Harmonic Balance Method
,”
Nonlinear Dyn.
,
98
(
1
), pp.
75
94
.10.1007/s11071-019-05172-6
33.
Vorotnikov
,
K.
, and
Starosvetsky
,
Y.
,
2016
, “
Bifurcation Structure of the Special Class of Nonstationary Regimes Emerging in the 2D Inertially Coupled, Unit-Cell Model: Analytical Study
,”
J. Sound Vib.
,
377
, pp.
226
242
.10.1016/j.jsv.2016.05.001
34.
Cheung
,
Y. L.
,
Chen
,
S. H.
, and
Lau
,
S. L.
,
1990
, “
Application of the Incremental Harmonic Balance Method to Cubic Non-Linearity Systems
,”
J. Sound Vib.
,
140
(
2
), pp.
273
286
.10.1016/0022-460X(90)90528-8
35.
Huang
,
J. L.
,
Xiao
,
L. J.
, and
Zhu
,
W. D.
,
2020
, “
Investigation of Quasi-Periodic Response of a Buckled Beam Under Harmonic Base Excitation With an “Unexplained” Sideband Structure
,”
Nonlinear Dyn.
,
100
(
3
), pp.
2103
2119
.10.1007/s11071-020-05641-3
36.
Hsu
,
C. S.
, and
Cheng
,
W.-H.
,
1973
, “
Applications of the Theory of Impulsive Parametric Excitation and New Treatments of General Parametric Excitation Problems
,”
ASME J. Appl. Mech.
,
40
(
1
), pp.
78
86
.10.1115/1.3422976
37.
Hsu
,
C. S.
,
1972
, “
Impulsive Parametric Excitation: Theory
,”
ASME J. Appl. Mech.
,
39
(
2
), pp.
551
558
.10.1115/1.3422715
38.
Huang
,
J. L.
,
Su
,
R. K. L.
, and
Chen
,
S. H.
,
2009
, “
Precise Hsu's Method for Analyzing the Stability of Periodic Solutions of Multi-Degrees-of-Freedom Systems With Cubic Nonlinearity
,”
Comput. Struct.
,
87
(
23–24
), pp.
1624
1630
.10.1016/j.compstruc.2009.09.005
39.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1995
,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods,
Wiley
, New York.10.1002/9783527617548
40.
Huang
,
J. L.
,
Su
,
R. K. L.
,
Lee
,
R. Y. Y.
, and
Chen
,
S. H.
,
2018
, “
Various Bifurcation Phenomena in a Nonlinear Curved Beam Subjected to Base Harmonic Excitation
,”
Int. J. Bifurcation Chaos
,
28
(
07
), p.
1830023
.10.1142/S0218127418300239
You do not currently have access to this content.