Abstract
In the present study, we examined the effectiveness of three linearization approaches for solving the time-fractional generalized Burgers' equation using a modified version of the fractional derivative by adopting the Atangana-Baleanu Caputo derivative. A stability analysis of the linearized time-fractional Burgers' difference equation was also presented. All linearization strategies used to solve the proposed nonlinear problem are unconditionally stable. To support the theory, two numerical examples are considered. Furthermore, numerical results demonstrate the comparison of linearization strategies and manifest the effectiveness of the proposed numerical scheme in three distinct ways.
References
1.
Podlubny
,
I.
, 1999
, “Fractional Differential Equations,”
Academic Press
,
San Diego
.2.
Machado
,
J. T.
, and
Kiryakova
,
V.
, 2019
, “
Recent History of the Fractional Calculus: Data and Statistics
,” Handbook Fractional Calculus Applications
, Vol.
1
, pp. 1
–21
, De Gruyter, Berlin, Boston.10.1515/9783110571622-0013.
Kadalbajoo
,
M. K.
,
Sharma
,
K. K.
, and
Awasthi
,
A.
, 2005
, “
A Parameter-Uniform Implicit Difference Scheme for Solving Time-Dependent Burgers' Equations
,” Appl. Math. Comput.
,
170
(2
), pp. 1365
–1393
.10.1016/j.amc.2005.01.0324.
Kadalbajoo
,
M. K.
, and
Awasthi
,
A.
, 2006
, “
A Numerical Method Based on Crank-Nicolson Scheme for Burgers' Equation
,” Appl. Math. Comput.
,
182
(2
), pp. 1430
–1442
.10.1016/j.amc.2006.05.0305.
Jiwari
,
R.
,
Mittal
,
R.
, and
Sharma
,
K. K.
, 2013
, “
A Numerical Scheme Based on Weighted Average Differential Quadrature Method for the Numerical Solution of Burgers' Equation
,” Appl. Math. Comput.
,
219
(12
), pp. 6680
–6691
.10.1016/j.amc.2012.12.0356.
Hashmi
,
M. S.
,
Wajiha
,
M.
,
Yao
,
S.-W.
,
Ghaffar
,
A.
, and
Inc
,
M.
, 2021
, “
Cubic Spline Based Differential Quadrature Method: A Numerical Approach for Fractional Burger Equation
,” Results Phys.
,
26
, p. 104415
.10.1016/j.rinp.2021.1044157.
Akram
,
T.
,
Abbas
,
M.
,
Riaz
,
M. B.
,
Ismail
,
A. I.
, and
Ali
,
N. M.
, 2020
, “
An Efficient Numerical Technique for Solving Time Fractional Burgers Equation
,” Alexandria Eng. J.
,
59
(4
), pp. 2201
–2220
.10.1016/j.aej.2020.01.0488.
Mittal
,
R.
, and
Jain
,
R.
, 2012
, “
Numerical Solutions of Nonlinear Burgers' Equation With Modified Cubic B-Splines Collocation Method
,” Appl. Math. Comput.
,
218
(15
), pp. 7839
–7855
.10.1016/j.amc.2012.01.0599.
Yaseen
,
M.
, and
Abbas
,
M.
, 2020
, “
An Efficient Computational Technique Based on Cubic Trigonometric B-Splines for Time Fractional Burgers' Equation
,” Int. J. Comput. Math.
,
97
(3
), pp. 725
–738
.10.1080/00207160.2019.161205310.
Majeed
,
A.
,
Kamran
,
M.
, and
Rafique
,
M.
, 2020
, “
An Approximation to the Solution of Time Fractional Modified Burgers' Equation Using Extended Cubic B-Spline Method
,” Comput. Appl. Math.
,
39
(4
), p. 257
.10.1007/s40314-020-01307-311.
Ramadan
,
M. A.
,
El-Danaf
,
T. S.
, and
Abd Alaal
,
F. E.
, 2005
, “
A Numerical Solution of the Burgers' Equation Using Septic B-Splines
,” Chaos, Solitons Fractals
,
26
(4
), pp. 1249
–1258
.10.1016/j.chaos.2005.02.01912.
Jiwari
,
R.
, 2012
, “
A Haar Wavelet Quasilinearization Approach for Numerical Simulation of Burgers' Equation
,” Comput. Phys. Commun.
,
183
(11
), pp. 2413
–2423
.10.1016/j.cpc.2012.06.00913.
Verma
,
A. K.
,
Rawani
,
M. K.
, and
Cattani
,
C.
, 2021
, “
A Numerical Scheme for a Class of Generalized Burgers' Equation Based on Haar Wavelet Nonstandard Finite Difference Method
,” Appl. Numer. Math.
,
168
, pp. 41
–54
.10.1016/j.apnum.2021.05.01914.
Oruç
,
Ö.
,
Esen
,
A.
, and
Bulut
,
F.
, 2019
, “
A Unified Finite Difference Chebyshev Wavelet Method for Numerically Solving Time Fractional Burgers'equation
,” Discrete Contin. Dyn. Syst.-Ser. S
,
12
(3
), pp. 533
–542
.10.3934/dcdss.201903515.
Xu
,
Y.
, and
Agrawal
,
O. P.
, 2013
, “
Numerical Solutions and Analysis of Diffusion for New Generalized Fractional Burgers Equation
,” Fractional Calculus Appl. Anal.
,
16
, pp. 709
–736
.10.2478/s13540-013-0045-416.
Momani
,
S.
, 2006
, “
Non-Perturbative Analytical Solutions of the Space-and Time-Fractional Burgers Equations
,” Chaos, Solitons Fractals
,
28
(4
), pp. 930
–937
.10.1016/j.chaos.2005.09.00217.
El-Danaf
,
T. S.
, and
Hadhoud
,
A. R.
, 2012
, “
Parametric Spline Functions for the Solution of the One Time Fractional Burgers' Equation
,” Appl. Math. Modell.
,
36
(10
), pp. 4557
–4564
.10.1016/j.apm.2011.11.03518.
Li
,
D.
,
Zhang
,
C.
, and
Ran
,
M.
, 2016
, “
A Linear Finite Difference Scheme for Generalized Time Fractional Burgers Equation
,” Appl. Math. Modell.
,
40
(11–12
), pp. 6069
–6081
.10.1016/j.apm.2016.01.04319.
Asgari
,
Z.
, and
Hosseini
,
S. M.
, 2018
, “
Efficient Numerical Schemes for the Solution of Generalized Time Fractional Burgers Type Equations
,” Numer. Algorithms
,
77
, pp. 763
–792
.10.1007/s11075-017-0339-420.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
, 2006
, Theory and Applications of Fractional Differential Equations
, Vol.
204
,
Elsevier
, Publishers BV, Amsterdam.21.
Zhou
,
Y.
, and
Zhang
,
Y.
, 2020
, “
Noether Symmetries for Fractional Generalized Birkhoffian Systems in Terms of Classical and Combined Caputo Derivatives
,” Acta Mech.
,
231
(7
), pp. 3017
–3029
.10.1007/s00707-020-02690-y22.
Caputo
,
M.
, and
Fabrizio
,
M.
, 2015
, “
A New Definition of Fractional Derivative Without Singular Kernel
,” Prog. Fractional Differ. Appl.
,
1
(2
), pp. 73
–85
.https://digitalcommons.aaru.edu.jo/pfda/vol1/iss2/123.
Atangana
,
A.
, and
Baleanu
,
D.
, 2016
, “
New Fractional Derivatives With Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model
,” Therm. Sci.
, 20, pp. 763
–769
.10.2298/TSCI160111018A24.
Akgül
,
A.
, and
Modanli
,
M.
, 2019
, “
Crank–Nicholson Difference Method and Reproducing Kernel Function for Third Order Fractional Differential Equations in the Sense of Atangana–Baleanu Caputo Derivative
,” Chaos, Solitons Fractals
,
127
, pp. 10
–16
.10.1016/j.chaos.2019.06.01125.
Tajadodi
,
H.
, 2020
, “
A Numerical Approach of Fractional Advection-Diffusion Equation With Atangana–Baleanu Derivative
,” Chaos, Solitons Fractals
,
130
, p. 109527
.10.1016/j.chaos.2019.10952726.
Bas
,
E.
, and
Ozarslan
,
R.
, 2018
, “
Real World Applications of Fractional Models by Atangana–Baleanu Fractional Derivative
,” Chaos, Solitons Fractals
,
116
, pp. 121
–125
.10.1016/j.chaos.2018.09.01927.
Gao
,
W.
,
Ghanbari
,
B.
, and
Baskonus
,
H. M.
, 2019
, “
New Numerical Simulations for Some Real World Problems With Atangana–Baleanu Fractional Derivative
,” Chaos, Solitons Fractals
,
128
, pp. 34
–43
.10.1016/j.chaos.2019.07.03728.
Owolabi
,
K. M.
, 2018
, “
Numerical Patterns in Reaction–Diffusion System With the Caputo and Atangana–Baleanu Fractional Derivatives
,” Chaos, Solitons Fractals
,
115
, pp. 160
–169
.10.1016/j.chaos.2018.08.02529.
Sumelka
,
W.
,
Łuczak
,
B.
,
Gajewski
,
T.
, and
Voyiadjis
,
G. Z.
, 2020
, “
Modelling of AAA in the Framework of Time-Fractional Damage Hyperelasticity
,” Int. J. Solids Struct.
,
206
, pp. 30
–42
.10.1016/j.ijsolstr.2020.08.01530.
Chawla
,
R.
,
Deswal
,
K.
, and
Kumar
,
D.
, 2022
, “
A Novel Finite Difference Based Numerical Approach for Modified Atangana-Baleanu Caputo Derivative
,” AIMS Math.
,
7
(9
), pp. 17252
–17268
.10.3934/math.202295031.
Al-Refai
,
M.
, and
Baleanu
,
D.
, 2022
, “
On an Extension of the Operator With Mittag-Leffler Kernel
,” FRACTALS (fractals)
,
30
(05
), pp. 1
–7
.10.1142/S0218348X2240129632.
Sun
,
H.
, and
Sun
,
Z-Z.
, 2015
, “
On Two Linearized Difference Schemes for Burgers' Equation
,” Int. J. Comput. Math.
,
92
(6
), pp. 1160
–1179
.10.1080/00207160.2014.92705933.
Bellman
,
R. E.
, 1965
, Quasilinearization and Nonlinear Boundary-Value Problems
, Vol.
3
,
American Elsevier Publishing Company
.34.
Rubin
,
S. G.
, and
Graves
,
R. A.
, Jr
, 1975
, “
Viscous Flow Solutions With a Cubic Spline Approximation
,” Comput. Fluids
,
3
(1
), pp. 1
–36
.10.1016/0045-7930(75)90006-735.
Chawla
,
R.
,
Deswal
,
K.
, and
Kumar
,
D.
, 2022
, “
A New Numerical Formulation for the Generalized Time-Fractional Benjamin Bona Mohany Burgers' Equation
,” Int. J. Nonlinear Sci. Numer. Simul.
, epub.10.1515/ijnsns-2022-0209 36.
Gowrisankar
,
S.
, and
Natesan
,
S.
, 2019
, “
An Efficient Robust Numerical Method for Singularly Perturbed Burgers' Equation
,” Appl. Math. Computation
,
346
, pp. 385
–394
.10.1016/j.amc.2018.10.04937.
Lakshmi
,
C.
, and
Awasthi
,
A.
, 2018
, “
Robust Numerical Scheme for Nonlinear Modified Burgers Equation
,” Int. J. Comput. Math.
,
95
(9
), pp. 1910
–1926
.10.1080/00207160.2017.133789638.
Kumar
,
D.
, and
Nisar
,
K. S.
, 2022
, “
A Novel Linearized Galerkin Finite Element Scheme With Fractional Crank–Nicolson Method for the Nonlinear Coupled Delay Subdiffusion System With Smooth Solutions
,” Math. Methods Appl. Sci.
,
45
(3
), pp. 1377
–1401
.10.1002/mma.785839.
Zaky
,
M. A.
, and
Ameen
,
I. G.
, 2020
, “
A Priori Error Estimates of a Jacobi Spectral Method for Nonlinear Systems of Fractional Boundary Value Problems and Related Volterra-Fredholm Integral Equations With Smooth Solutions
,” Numer. Algorithms
,
84
(1
), pp. 63
–89
.10.1007/s11075-019-00743-5Copyright © 2023 by ASME
You do not currently have access to this content.