Abstract

The intrinsic formulation for geometrically nonlinear beam dynamics provides a compact and versatile description of slender beam-like structures. With nonlinearities limited to second-order couplings in the formulation, it has been an attractive choice in formulating nonlinear reduced-order models for dynamic analysis and control design in aeroelasticity problems involving large displacements and rotations. Owing to its rotation-free formalism, the intrinsic formulation has not been formulated to accommodate multibody constraints, limiting its use against multibody structures with kinematic constraints. This work aims to address such weakness as we present developments in introducing multibody constraints into the full and reduced-order intrinsic equations while still preserving the beneficial traits of the method. We describe the resolution of displacement-level constraints using index-1 approach and adaptation of constraint stabilization strategies to the intrinsic formulation using state projection. The numerical behavior of the full- and reduced-order implementations are assessed using test cases with large static and dynamic deformations with time-domain simulations to demonstrate validity of the approach.

References

1.
Hodges
,
D. H.
,
2003
, “
Geometrically Exact, Intrinsic Theory for Dynamics of Curved and Twisted Anisotropic Bseams
,”
AIAA J.
,
41
(
6
), pp.
1131
1137
.10.2514/2.2054
2.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1988
, “
On the Dynamics in Space of Rods Undergoing Large Motions-a Geometrically Exact Approach
,”
Comput. Methods Appl. Mech. Eng.
,
66
(
2
), pp.
125
161
.10.1016/0045-7825(88)90073-4
3.
Geradin
,
M.
, and
Cardona
,
A.
,
2001
,
Flexible Multibody Dynamics: A Finite Element Approach
,
Wiley
,
New York
.
4.
Bauchau
,
O. A.
,
Betsch
,
P.
,
Cardona
,
A.
,
Gerstmayr
,
J.
,
Jonker
,
B.
,
Masarati
,
P.
, and
Sonneville
,
V.
,
2016
, “
Validation of Flexible Multibody Dynamics Beam Formulations Using Benchmark Problems
,”
Multibody Syst. Dyn.
,
37
(
1
), pp.
29
48
.10.1007/s11044-016-9514-y
5.
Pai
,
P. F.
,
2014
, “
Problems in Geometrically Exact Modeling of Highly Flexible Beams
,”
Thin-Walled Struct.
,
76
, pp.
65
76
.10.1016/j.tws.2013.11.008
6.
Hesse
,
H.
, and
Palacios
,
R.
,
2012
, “
Consistent Structural Linearisation in Flexible-Body Dynamics With Large Rigid-Body Motion
,”
Comput. Struct.
,
110–111
, pp.
1
14
.
7.
Otsuka
,
K.
,
Wang
,
Y.
, and
Makihara
,
K.
,
2021
, “
Three-Dimensional Aeroelastic Model for Successive Analyses of High-Aspect-Ratio Wings
,”
ASME J. Vib. Acoust.
,
143
(
6
), p.
061006
.10.1115/1.4050276
8.
Goizueta
,
N.
,
Wynn
,
A.
,
Palacios
,
R.
,
Drachinsky
,
A.
, and
Raveh
,
D. E.
,
2022
, “
Flutter Predictions for Very Flexible Wing Wind Tunnel Test
,”
J. Aircr.
,
59
(
4
), pp.
1072
1099
.10.2514/1.C036710
9.
Aouf
,
N.
,
Boulet
,
B.
, and
Botez
,
R.
,
2002
, “
Model and Controller Reduction for Flexible Aircraft Preserving Robust Performance
,”
Control Syst. Technol., IEEE Trans.
,
10
(
2
), pp.
229
237
.10.1109/87.987068
10.
Haghighat
,
S.
,
Martins
,
J. R. R. A.
, and
Liu
,
H. H. T.
,
2012
, “
Model-Predictive Gust Load Alleviation Controller for a Highly Flexible Aircraft
,”
J. Guid., Control, Dyn.
,
35
(
6
), pp.
1751
1766
.10.2514/1.57013
11.
Su
,
W.
, and
Cesnik
,
C. E.
,
2011
, “
Strain-Based Geometrically Nonlinear Beam Formulation for Modeling Very Flexible Aircraft
,”
Int. J. Solids Struct.
,
48
(
16–17
), pp.
2349
2360
.10.1016/j.ijsolstr.2011.04.012
12.
Shabana
,
A. A.
,
2015
, “
Definition of ANCF Finite Elements
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
054506
.10.1115/1.4030369
13.
Gerstmayr
,
J.
,
Sugiyama
,
H.
, and
Mikkola
,
A.
,
2013
, “
Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems
,”
J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031016
.10.1115/1.4023487
14.
Otsuka
,
K.
,
Makihara
,
K.
, and
Sugiyama
,
H.
,
2022
, “
Recent Advances in the Absolute Nodal Coordinate Formulation: Literature Review From 2012 to 2020
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
8
), p.
080803
.10.1115/1.4054113
15.
Otsuka
,
K.
,
Wang
,
Y.
, and
Makihara
,
K.
,
2021
, “
Absolute Nodal Coordinate Formulation With Vector-Strain Transformation for High Aspect Ratio Wings
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
1
), p.
011007
.10.1115/1.4049028
16.
Hodges
,
D. H.
,
1990
, “
A Mixed Variational Formulation Based on Exact Intrinsic Equations for Dynamics of Moving Beams
,”
Int. J. Solids Struct.
,
26
(
11
), pp.
1253
1273
.10.1016/0020-7683(90)90060-9
17.
Hegemier
,
G.
, and
Nair
,
S.
,
1977
, “
A Nonlinear Dynamical Theory for Heterogeneous, Anisotropic, Elastic Rods
,”
AIAA J.
,
15
(
1
), pp.
8
15
.10.2514/3.7296
18.
Sotoudeh
,
Z.
, and
Hodges
,
D. H.
,
2011
, “
Modeling Beams With Various Boundary Conditions Using Fully Intrinsic Equations
,”
J. Appl. Mech.
,
78
(
3
), ▪.
19.
Yu
,
W.
,
Hodges
,
D. H.
, and
Ho
,
J. C.
,
2012
, “
Variational Asymptotic Beam Sectional Analysis–an Updated Version
,”
Int. J. Eng. Sci.
,
59
, pp.
40
64
.10.1016/j.ijengsci.2012.03.006
20.
Wang
,
Y.
,
Wynn
,
A.
, and
Palacios
,
R.
,
2016
, “
Nonlinear Modal Aeroservoelastic Analysis Framework for Flexible Aircraft
,”
AIAA J.
,
54
(
10
), pp.
3075
3090
.10.2514/1.J054537
21.
Wang
,
Y.
,
Wynn
,
A.
, and
Palacios
,
R.
,
2018
, “
Nonlinear Aeroelastic Control of Very Flexible Aircraft Using Model Updating
,”
J. Aircr.
,
55
(
4
), pp.
1551
1563
.10.2514/1.C034684
22.
Li
,
J.
,
Wang
,
Y.
,
Zhao
,
X.
, and
Qi
,
P.
,
2021
, “
Model Free Adaptive Control of Large and Flexible Wind Turbine Rotors With Controllable Flaps
,”
Renewable Energy
,
180
, pp.
68
82
.10.1016/j.renene.2021.08.050
23.
Zhang
,
W.
,
Chen
,
L.-L.
,
Guo
,
X.-Y.
, and
Sun
,
L.
,
2017
, “
Nonlinear Dynamical Behaviors of Deploying Wings in Subsonic Air Flow
,”
J. Fluids Struct.
,
74
, pp.
340
355
.10.1016/j.jfluidstructs.2017.04.006
24.
Otsuka
,
K.
,
Wang
,
Y.
,
Fujita
,
K.
,
Nagai
,
H.
, and
Makihara
,
K.
,
2019
, “
Multifidelity Modeling of Deployable Wings: Multibody Dynamic Simulation and Wind Tunnel Experiment
,”
AIAA J.
,
57
(
10
), pp.
4300
4311
.10.2514/1.J058676
25.
Wang
,
Y.
,
Zhao
,
X.
,
Palacios
,
R.
, and
Otsuka
,
K.
,
2022
, “
Aeroelastic Simulation of High-Aspect Ratio Wings With Intermittent Leading-Edge Separation
,”
AIAA J.
,
60
(
3
), pp.
1769
1782
.10.2514/1.J060909
26.
Ghiringhelli
,
G. L.
,
Masarati
,
P.
,
Mantegazza
,
P.
, and
Nixon
,
M. W.
,
1999
, “
Multi-Body Analysis of a Tiltrotor Configuration
,”
Nonlinear Dyn.
,
19
(
4
), pp.
333
357
.10.1023/A:1008386219934
27.
Ahrens
,
U.
,
Diehl
,
M.
, and
Schmehl
,
R.
,
2013
,
Airborne Wind Energy
,
Springer Science & Business Media
,
Berlin
.
28.
Pai
,
P. F.
,
2007
,
Highly Flexible Structures: Modeling, Computation, and Experimentation
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
29.
Laulusa
,
A.
, and
Bauchau
,
O. A.
,
2008
, “
Review of Classical Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
011004
.10.1115/1.2803257
30.
Bauchau
,
O. A.
, and
Laulusa
,
A.
,
2008
, “
Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
011005
.10.1115/1.2803258
31.
Rong
,
B.
,
Rui
,
X.
,
Tao
,
L.
, and
Wang
,
G.
,
2019
, “
Theoretical Modeling and Numerical Solution Methods for Flexible Multibody System Dynamics
,”
Nonlinear Dyn.
,
98
(
2
), pp.
1519
1553
.10.1007/s11071-019-05191-3
32.
Mariti
,
L.
,
Belfiore
,
N. P.
,
Pennestrì
,
E.
, and
Valentini
,
P. P.
,
2011
, “
Comparison of Solution Strategies for Multibody Dynamics Equations
,”
Int. J. Numer. Methods Eng.
,
88
(
7
), pp.
637
656
.10.1002/nme.3190
33.
Marques
,
F.
,
Souto
,
A. P.
, and
Flores
,
P.
,
2017
, “
On the Constraints Violation in Forward Dynamics of Multibody Systems
,”
Multibody Syst. Dyn.
,
39
(
4
), pp.
385
419
.10.1007/s11044-016-9530-y
34.
Braun
,
D. J.
, and
Goldfarb
,
M.
,
2009
, “
Eliminating Constraint Drift in the Numerical Simulation of Constrained Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
37–40
), pp.
3151
3160
.10.1016/j.cma.2009.05.013
35.
Li
,
M.
,
Jain
,
S.
, and
Haller
,
G.
,
2023
, “
Model Reduction for Constrained Mechanical Systems Via Spectral Submanifolds
,”
Nonlinear Dyn.
,
111
(
10
), pp.
8881
8911
.10.1007/s11071-023-08300-5
36.
Wang
,
Y.
,
Palacios
,
R.
, and
Wynn
,
A.
,
2015
, “
A Method for Normal-Mode-Based Model Reduction in Nonlinear Dynamics of Slender Structures
,”
Comput. Struct.
,
159
, pp.
26
40
.10.1016/j.compstruc.2015.07.001
37.
Sotoudeh
,
Z.
, and
Hodges
,
D. H.
,
2011
, “
Incremental Method for Structural Analysis of Joined-Wing Aircraft
,”
J. Aircr.
,
48
(
5
), pp.
1588
1601
.10.2514/1.C031302
38.
Blanes
,
S.
, and
Moan
,
P. C.
,
2002
, “
Practical Symplectic Partitioned Runge–Kutta and Runge–Kutta–Nyström Methods
,”
J. Comput. Appl. Math.
,
142
(
2
), pp.
313
330
.10.1016/S0377-0427(01)00492-7
39.
Otsuka
,
K.
, and
Makihara
,
K.
,
2019
, “
Absolute Nodal Coordinate Beam Element for Modeling Flexible and Deployable Aerospace Structures
,”
AIAA J.
,
57
(
3
), pp.
1343
1346
.10.2514/1.J057780
You do not currently have access to this content.