Abstract
In this paper, we present the application of local fractional methods in combination with the local fractional Sumudu transform (LFST) for a local fractional Tricomi equation (LFTE). The numerical simulations for obtained results are presented for the local fractional Tricomi equation with different initial conditions on the Cantor set. The computational approach shows that the implemented methods are very impressive to derive solutions for a local fractional Tricomi equation. Moreover, the solutions obtained by using these schemes are in quite good agreement with already computed solutions in the literature.
References
1.
Tricomi
,
F. G.
, 1923
, “
Sulle Equazioni Lineari Alle Derivate Parziali di Second Ordine, di Tipo Misto
,” Atti Accad. Nazionale Dei Lincei
,
14
, pp. 133
–247
. (In Italian).2.
Manwell
,
A. R.
, 1979
, The Tricomi Equation With Applications to the Theory of Plane Transonic Flow, Research Notes in Mathematics
,
Pitman Publishing Ltd
, London, UK, p. 35
.3.
Lupo
,
D.
, and
Payne
,
K. R.
, 1999
, “
A Dual Variational Approach to a Class of Nonlocal Semilinear Tricomi Problems
,” Nonlinear Differ. Equ. Appl.
,
6
(3
), pp. 247
–266
.10.1007/s0003000500754.
Rassias
,
J. M.
, 2002
, “
Uniqueness of Quasi-Regular Solutions for a bi-Parabolic Elliptic bi-Hyperbolic Tricomi Problem
,” Complex Var. Theory Appl. Int. J.
,
47
(8
), pp. 707
–718
.10.1080/027810702900163685.
Yagdjian
,
K.
, 2004
, “
A Note on the Fundamental Solution for the Tricomi-Type Equation in the Hyperbolic Domain
,” J. Differ. Equ.
,
206
(1
), pp. 227
–252
.10.1016/j.jde.2004.07.0286.
Morawetz
,
C. M.
, 2004
, “
Mixed Equations and Transonic Flow
,” J. Hyperbolic Differ. Equ.
,
01
(01
), pp. 1
–26
.10.1142/S02198916040000817.
Yagdjian
,
K.
, 2006
, “
Global Existence for the n-Dimensional Semilinear Tricomi-Type Equations
,” Commun. Partial Differ. Equ.
,
31
(6
), pp. 907
–944
.10.1080/036053005003615118.
Frankl
,
F. I.
, 1945
, “
On the Problems of Chaplygin for Mixed Subsonic and Supersonic Flows
,” Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
,
9
, pp. 121
–143
.9.
Guderley
,
G.
, 1953
, “
On the Presence of Shocks in Mixed Subsonic-Supersonic Flow Patterns
,” Adv. Appl. Mech.
,
3
, pp. 145
–184
.10.1016/S0065-2156(08)70210-210.
Chen
,
D.
, and
Wen
,
G.
, 2007
, “
Initial-Oblique Derivative Problem for Nonlinear Parabolic Equations in High Dimensional Domains
,” Int. J. Appl. Math. Stat.
,
8
, pp. 8
–19
.11.
Rassias
,
J. M.
, 2008
, “
Mixed Type Partial Differential Equations With Initial and Boundary Values in Fluid Mechanics
,” Int. J. Appl. Math. Stat.
,
13
(J08), pp. 77
–107
.http://users.uoa.gr/~jrassias/files/fl130_MIXED-TYP-PART-DIFF-EQU-999.pdf12.
Kuz'min
,
A. G.
, 2020
, Boundary Value Problems for Transonic Flows
,
Wiley
,
London, UK
.13.
Yagdjian
,
K.
, 2015
, “
Integral Transform Approach to Generalized Tricomi Equation
,” J. Differ. Equ.
,
259
(11
), pp. 5927
–5981
.10.1016/j.jde.2015.07.01414.
Zhang
,
K. Q.
, 2013
, “
A Note on Initial Value Problem for the Generalized Tricomi Equation in a Mixed-Type Domain
,” Acta. Math. Sin.-Eng. Ser.
,
29
(8
), pp. 1581
–1596
.10.1007/s10114-013-2123-215.
Ghiasi
,
E. K.
, and
Saleh
,
R.
, 2018
, “
Constructing Analytic Solutions on the Tricomi Equation
,” Open Phys.
,
16
(1
), pp. 143
–148
.10.1515/phys-2018-002216.
Arqub
,
O. A.
, 2017
, “
Solutions of Time-Fractional Tricomi and Keldysh Equations of Dirichlet Functions Types in Hilbert Space
,” Numer. Methods Partial Differ. Equ.
,
34
(5
), pp. 1759
–1780
.https://doi.org/10.1002/num.2223617.
Babakhani
,
A.
, and
Gejji
,
V. D.
, 2002
, “
On Calculus of Local Fractional Derivatives
,” J. Math. Anal. Appl.
,
270
(1
), pp. 66
–79
.10.1016/S0022-247X(02)00048-318.
Yang
,
X. J.
, 2011
, Local Fractional Functional Analysis and Its Applications
,
Asian Academic
,
Hong Kong, China
.19.
Yang
,
X. J.
, 2012
, Advanced Local Fractional Calculus and Its Applications
,
World Science
,
New York
.20.
Srivastava
,
H. M.
,
Golmankhaneh
,
A. K.
,
Baleanu
,
D.
, and
Yang
,
X. J.
, 2014
, “
Local Fractional Sumudu Transform With Application to IVPs on Cantor Sets
,” Abstr. Appl. Anal.
,
2014
, pp. 1
–7
.https://doi.org/10.1155/2014/62052921.
Jassim
,
H. K.
, 2015
, “
Local Fractional Laplace Decomposition Method for Nonhomogeneous Heat Equation Arising in Fractal Heat Flow With Local Fractional Derivative
,” Int. J. Adv. Appl. Math. Mech.
,
2
, pp. 1
–7
.https://www.researchgate.net/publication/279980888_Local_fractional_Laplace_decomposition_method_for_nonhomogeneous_heat_equations_arising_in_fractal_heat_flow_with_local_fractional_derivative22.
Yang
,
A. M.
,
Li
,
J.
,
Srivastava
,
H. M.
,
Xie
,
G. N.
, and
Yang
,
X. J.
, 2014
, “
Local Fractional Laplace Variational Iteration Method for Solving Linear Partial Differential Equation With Local Fractional Derivative
,” Discrete Dyn. Nat. Soc.
,
2014
, pp. 1
–9
.https://doi.org/10.1155/2014/36598123.
Jassim
,
H. K.
,
Ünlü
,
C.
,
Moshokoa
,
S. P.
, and
Khalique
,
C. M.
, 2015
, “
Local Fractional Variational Iteration Method for Solving Nonlinear Partial Differential Equations Within Local Fractional Operators
,” Appl. Appl. Math.
,
2015
(2
), pp. 1
–1065
.24.
Jassim
,
H. K.
,
Ünlü
,
C.
,
Moshokoa
,
S. P.
, and
Khalique
,
C. M.
, 2015
, “
Local Fractional Laplace Variational Iteration Method for Solving Diffusion and Wave Equations on Cantor Sets Within Local Fractional Operators
,” Math. Probl. Eng.
,
2015
, pp. 1
–9
.10.1155/2015/30987025.
Kumar
,
D.
,
Singh
,
J.
, and
Baleanu
,
D.
, 2017
, “
A Hybrid Computational Approach for Klein-Gordon Equations on Cantor Sets
,” Nonlinear Dyn.
,
87
(1
), pp. 511
–517
.10.1007/s11071-016-3057-x26.
Maitama
,
S.
, 2018
, “
Local Fractional Natural Homotopy Perturbation Method for Solving Partial Differential Equations With Local Fractional Derivative
,” Prog. Fract. Differ. Appl.
,
4
(3
), pp. 219
–228
.10.18576/pfda/04030627.
Yang
,
A. M.
,
Zhang
,
Y. Z.
, and
Zhang
,
X. L.
, 2014
, “
The Non-Differentiable Solution for Local Fractional Tricomi Equation Arising in Fractal Transonic Flow by Local Fractional Variational Iteration Method
,” Adv. Math. Phys.
,
2014
, pp. 1
–6
.10.1155/2014/98325428.
Singh
,
J.
,
Kumar
,
D.
, and
Nieto
,
J. J.
, 2016
, “
A Reliable Algorithm for a Local Fractional Tricomi Equation Arising in Fractal Transonic Flow
,” Entropy
,
18
(6
), pp. 206
–214
.10.3390/e1806020629.
Mirzaee
, F.
, and Samadyar
, N.
, 2021
, “Implicit Meshless Method to Solve 2D Fractional Stochastic Tricomi-Type Equation Defined on Irregular Domain Occurring in Fractal Transonic Flow
,” Numer. Methods Partial Differ. Equ.
, 37(2), pp. 1781–1799.10.1002/num.2260830.
Inc
,
M.
,
Korpinar
,
Z.
,
Almohsen
,
B.
, and
Chu
,
Y. M.
, 2021
, “
Some Numerical Solutions of Local Fractional Trocomi Equation in Fractal Transonic Flow
,” Alex. Eng. J
,
60
(1
), pp. 1147
–1153
.10.1016/j.aej.2020.10.03831.
Niu
,
X. F.
,
Zhang
,
C. L.
,
Li
,
Z. B.
, and
Zhao
,
Y.
, 2014
, “
Local Fractional Derivative Boundary Value Problems for Tricomi Equation Arising in Fractal Transonic Flow
,” Abstr. Appl. Anal.
,
2014
, pp. 1
–5
.https://doi.org/10.1155/2014/87231832.
Ziane
,
D.
,
Baleanu
,
D.
,
Belghaba
,
K.
, and
Cherif
,
M. H.
, 2019
, “
Local Fractional Sumudu Decomposition Method for Linear Partial Differential Equations With Local Fractional Derivative
,” J. King Saud Univ. Sci.
,
31
(1
), pp. 83
–88
.10.1016/j.jksus.2017.05.00233.
Yan
,
S. P.
,
Jafari
,
H.
, and
Jassim
,
H. K.
, 2014
, “
Local Fractional Adomian Decomposition and Function Decomposition Methods for Laplace Equation Within Local Fractional Operators
,” Adv. Math. Phys.
,
2014
, pp. 1
–7
.10.1155/2014/16158034.
Yang
,
X. J.
,
Baleanu
,
D.
, and
Zhong
,
W. P.
, 2013
, “
Approximate Solutions for Diffusion Equations on Cantor Space-Time
,” Proc. Rom. Aca. Ser. A
,
14
(2
), pp. 127
–133
.https://www.researchgate.net/publication/239011799_Approximate_solutions_for_diffusion_equations_on_Cantor_space-time35.
Yan
,
S.-P.
,
Jafari
,
H.
, and
Jassim
,
H. K.
, 2014
, “
Local Fractional Adomian Decomposition Method for Solving Two Dimensional Heat Conduction Equations Within Local Fractional Operators
,” J. Adv. Math.
,
2014
(4
), pp. 1
–2582
.36.
Ziane
,
D.
, 2017
, “
Local Fractional Sumudu Variational Iteration Method for Solving Partial Differential Equations With Local Fractional Derivative
,” Int. J. Open Probl. Comput. Sci. Math.
,
10
(3
), pp. 29
–42
.10.12816/004870437.
Baleanu
,
D.
,
Tenreiro Machado
,
J. A.
,
Cattani
,
C.
,
Baleanu
,
M. C.
, and
Yang
,
X.-J.
, 2014
, “
Local Fractional Variational Iteration Method for Diffusion and Wave Equation on Cantor Sets
,” Rom. J. Phys.
,
2014
(1–2
), pp. 1
–48
.10.1155/2014/53504838.
Ziane
,
D.
,
Cherif
,
M. H.
,
Belghaba
,
K.
, and
Belgacem
,
F. B. M.
, 2021
, “
An Accurate Method for Nonlinear Local Fractional Wave-Like Equations With Variable Coefficients
,” Comput. Methods Differ. Equ.
, 9(3), pp. 774
–787
.39.
Ziane
,
D.
, and
Cherif
,
M. H.
, 2021
, “
A New Analytical Solution of Klein-Gordon Equation With Local Fractional Derivative
,” Asian-Eur. J. Math.
,
14
(3
), p. 2150029
.10.1142/S179355712150029740.
Alkahtani
,
B. S.
,
Algahtani
,
O. J.
, and
Goswami
,
P.
, 2016
, “
On the Solution of Linear and Nonlinear Partial Differential Equations: Applications of Local Fractional Sumudu Variational Method
,” J. Math. Comput. Sci.
,
16
(3
), pp. 445
–451
.10.22436/jmcs.016.03.1441.
Dubey
,
V. P.
,
Singh
,
J.
,
Alshehri
,
A. M.
,
Dubey
,
S.
, and
Kumar
,
D.
, 2021
, “
A Comparative Analysis of Two Computational Schemes for Solving Local Fractional Laplace Equations
,” Math. Methods Appl. Sci.
,
44
(17
), pp. 13540
–13559
.10.1002/mma.764242.
Jafari
,
H.
,
Prasad
,
J. G.
,
Goswami
,
P.
, and
Dubey
,
R. S.
, 2021
, “
Solution of the Local Fractional Generalized KdV Equation Using Homotopy Analysis Method
,” Fractals
,
29
(5
), p. 2140014
.10.1142/S0218348X2140014443.
Jafari
,
H.
,
Jassim
,
H. K.
,
Baleanu
,
D.
, and
Chu
,
Y. M.
, 2021
, “
On the Approximate Solutions for a System of Coupled KdV Equations With Local Fractional Derivative
,” Fractals
,
29
(5
), p. 2140012
.10.1142/S0218348X2140012044.
Jafari
,
H.
, 2021
, “
A New General Integral Transform for Solving Integral Equations
,” J. Adv. Res.
,
32
, pp. 133
–138
.10.1016/j.jare.2020.08.01645.
Meddahi
,
M.
,
Jafari
,
H.
, and
Ncube
,
M. N.
, 2021
, “
New General Integral Transform Via Atangana–Baleanu Derivatives
,” Adv. Differ. Equ.
, 385(2021), pp. 1
–14
.https://doi.org/10.1186/s13662-021-03540-446.
Watugala
,
G. K.
, 1993
, “
Sumudu Transform—A New Integral Transform to Solve Differential Equations and Control Engineering Problems
,” Int. J. Math. Educ. Sci. Technol.
,
24
(1
), pp. 35
–43
.10.1080/002073993024010547.
Watugala
,
G. K.
, 2002
, “
The Sumudu Transform for Functions of Two Variables
,” Math. Eng. Ind.
,
8
(4
), pp. 293
–302
.48.
Sahni
,
M.
,
Parikh
,
M.
, and
Sahni
,
R.
, 2021
, “
Sumudu Transform for Solving Ordinary Differential Equation in a Fuzzy Environment
,” J. Interdiscip. Math.
,
24
(6
), pp. 1565
–1577
.10.1080/09720502.2020.184546849.
Belgacem
,
F.
,
Karaballi
,
A. A.
, and
Kalla
,
S. L.
, 2003
, “
Analytical Investigations of the Sumudu Transform and Applications to Integral Production Equations
,” Math. Probl. Eng
,
2003
(3
), pp. 103
–118
.10.1155/S1024123X0320701850.
Adomian
,
G.
, 1984
, “
A New Approach to Nonlinear Partial Differential Equations
,” J. Math. Anal. Appl.
,
102
, pp. 402
–434
.51.
Adomian
,
G.
, 1994
, Solving Frontier Problems of Physics: The Decomposition Method
,
Kluwer Academic Publishers
,
Boston, MA
.52.
Yang
,
Y. J.
,
Baleanu
,
D.
, and
Yang
,
X. J.
, 2013
, “
A Local Fractional Variational Iteration Method for Laplace Equation Within Local Fractional Operators
,” Abstr. Appl. Anal.
,
2013
, pp. 1
–6
.https://doi.org/10.1155/2013/20265053.
Yang
,
X. J.
, and
Baleanu
,
D.
, 2013
, “
Fractal Heat Conduction Problem Solved by Local Fractional Variational Iteration Method
,” Therm. Sci.
,
17
(2
), pp. 625
–628
.10.2298/TSCI121124216Y54.
Liu
,
C. F.
,
Kong
,
S. S.
, and
Yuan
,
S. J.
, 2013
, “
Reconstructive Schemes for Variational Iteration Method Within Yang-Laplace Transform With Application to Fractal Heat Conduction Problem
,” Therm. Sci.
,
17
(3
), pp. 715
–721
.10.2298/TSCI120826075LCopyright © 2022 by ASME
You do not currently have access to this content.