Abstract

In this paper, we present the application of local fractional methods in combination with the local fractional Sumudu transform (LFST) for a local fractional Tricomi equation (LFTE). The numerical simulations for obtained results are presented for the local fractional Tricomi equation with different initial conditions on the Cantor set. The computational approach shows that the implemented methods are very impressive to derive solutions for a local fractional Tricomi equation. Moreover, the solutions obtained by using these schemes are in quite good agreement with already computed solutions in the literature.

References

1.
Tricomi
,
F. G.
,
1923
, “
Sulle Equazioni Lineari Alle Derivate Parziali di Second Ordine, di Tipo Misto
,”
Atti Accad. Nazionale Dei Lincei
,
14
, pp.
133
247
. (In Italian).
2.
Manwell
,
A. R.
,
1979
,
The Tricomi Equation With Applications to the Theory of Plane Transonic Flow, Research Notes in Mathematics
,
Pitman Publishing Ltd
, London, UK, p.
35
.
3.
Lupo
,
D.
, and
Payne
,
K. R.
,
1999
, “
A Dual Variational Approach to a Class of Nonlocal Semilinear Tricomi Problems
,”
Nonlinear Differ. Equ. Appl.
,
6
(
3
), pp.
247
266
.10.1007/s000300050075
4.
Rassias
,
J. M.
,
2002
, “
Uniqueness of Quasi-Regular Solutions for a bi-Parabolic Elliptic bi-Hyperbolic Tricomi Problem
,”
Complex Var. Theory Appl. Int. J.
,
47
(
8
), pp.
707
718
.10.1080/02781070290016368
5.
Yagdjian
,
K.
,
2004
, “
A Note on the Fundamental Solution for the Tricomi-Type Equation in the Hyperbolic Domain
,”
J. Differ. Equ.
,
206
(
1
), pp.
227
252
.10.1016/j.jde.2004.07.028
6.
Morawetz
,
C. M.
,
2004
, “
Mixed Equations and Transonic Flow
,”
J. Hyperbolic Differ. Equ.
,
01
(
01
), pp.
1
26
.10.1142/S0219891604000081
7.
Yagdjian
,
K.
,
2006
, “
Global Existence for the n-Dimensional Semilinear Tricomi-Type Equations
,”
Commun. Partial Differ. Equ.
,
31
(
6
), pp.
907
944
.10.1080/03605300500361511
8.
Frankl
,
F. I.
,
1945
, “
On the Problems of Chaplygin for Mixed Subsonic and Supersonic Flows
,”
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
,
9
, pp.
121
143
.
9.
Guderley
,
G.
,
1953
, “
On the Presence of Shocks in Mixed Subsonic-Supersonic Flow Patterns
,”
Adv. Appl. Mech.
,
3
, pp.
145
184
.10.1016/S0065-2156(08)70210-2
10.
Chen
,
D.
, and
Wen
,
G.
,
2007
, “
Initial-Oblique Derivative Problem for Nonlinear Parabolic Equations in High Dimensional Domains
,”
Int. J. Appl. Math. Stat.
,
8
, pp.
8
19
.
11.
Rassias
,
J. M.
,
2008
, “
Mixed Type Partial Differential Equations With Initial and Boundary Values in Fluid Mechanics
,”
Int. J. Appl. Math. Stat.
,
13
(J08), pp.
77
107
.http://users.uoa.gr/~jrassias/files/fl130_MIXED-TYP-PART-DIFF-EQU-999.pdf
12.
Kuz'min
,
A. G.
,
2020
,
Boundary Value Problems for Transonic Flows
,
Wiley
,
London, UK
.
13.
Yagdjian
,
K.
,
2015
, “
Integral Transform Approach to Generalized Tricomi Equation
,”
J. Differ. Equ.
,
259
(
11
), pp.
5927
5981
.10.1016/j.jde.2015.07.014
14.
Zhang
,
K. Q.
,
2013
, “
A Note on Initial Value Problem for the Generalized Tricomi Equation in a Mixed-Type Domain
,”
Acta. Math. Sin.-Eng. Ser.
,
29
(
8
), pp.
1581
1596
.10.1007/s10114-013-2123-2
15.
Ghiasi
,
E. K.
, and
Saleh
,
R.
,
2018
, “
Constructing Analytic Solutions on the Tricomi Equation
,”
Open Phys.
,
16
(
1
), pp.
143
148
.10.1515/phys-2018-0022
16.
Arqub
,
O. A.
,
2017
, “
Solutions of Time-Fractional Tricomi and Keldysh Equations of Dirichlet Functions Types in Hilbert Space
,”
Numer. Methods Partial Differ. Equ.
,
34
(
5
), pp.
1759
1780
.https://doi.org/10.1002/num.22236
17.
Babakhani
,
A.
, and
Gejji
,
V. D.
,
2002
, “
On Calculus of Local Fractional Derivatives
,”
J. Math. Anal. Appl.
,
270
(
1
), pp.
66
79
.10.1016/S0022-247X(02)00048-3
18.
Yang
,
X. J.
,
2011
,
Local Fractional Functional Analysis and Its Applications
,
Asian Academic
,
Hong Kong, China
.
19.
Yang
,
X. J.
,
2012
,
Advanced Local Fractional Calculus and Its Applications
,
World Science
,
New York
.
20.
Srivastava
,
H. M.
,
Golmankhaneh
,
A. K.
,
Baleanu
,
D.
, and
Yang
,
X. J.
,
2014
, “
Local Fractional Sumudu Transform With Application to IVPs on Cantor Sets
,”
Abstr. Appl. Anal.
,
2014
, pp.
1
7
.https://doi.org/10.1155/2014/620529
21.
Jassim
,
H. K.
,
2015
, “
Local Fractional Laplace Decomposition Method for Nonhomogeneous Heat Equation Arising in Fractal Heat Flow With Local Fractional Derivative
,”
Int. J. Adv. Appl. Math. Mech.
,
2
, pp.
1
7
.https://www.researchgate.net/publication/279980888_Local_fractional_Laplace_decomposition_method_for_nonhomogeneous_heat_equations_arising_in_fractal_heat_flow_with_local_fractional_derivative
22.
Yang
,
A. M.
,
Li
,
J.
,
Srivastava
,
H. M.
,
Xie
,
G. N.
, and
Yang
,
X. J.
,
2014
, “
Local Fractional Laplace Variational Iteration Method for Solving Linear Partial Differential Equation With Local Fractional Derivative
,”
Discrete Dyn. Nat. Soc.
,
2014
, pp.
1
9
.https://doi.org/10.1155/2014/365981
23.
Jassim
,
H. K.
,
Ünlü
,
C.
,
Moshokoa
,
S. P.
, and
Khalique
,
C. M.
,
2015
, “
Local Fractional Variational Iteration Method for Solving Nonlinear Partial Differential Equations Within Local Fractional Operators
,”
Appl. Appl. Math.
,
2015
(
2
), pp.
1
1065
.
24.
Jassim
,
H. K.
,
Ünlü
,
C.
,
Moshokoa
,
S. P.
, and
Khalique
,
C. M.
,
2015
, “
Local Fractional Laplace Variational Iteration Method for Solving Diffusion and Wave Equations on Cantor Sets Within Local Fractional Operators
,”
Math. Probl. Eng.
,
2015
, pp.
1
9
.10.1155/2015/309870
25.
Kumar
,
D.
,
Singh
,
J.
, and
Baleanu
,
D.
,
2017
, “
A Hybrid Computational Approach for Klein-Gordon Equations on Cantor Sets
,”
Nonlinear Dyn.
,
87
(
1
), pp.
511
517
.10.1007/s11071-016-3057-x
26.
Maitama
,
S.
,
2018
, “
Local Fractional Natural Homotopy Perturbation Method for Solving Partial Differential Equations With Local Fractional Derivative
,”
Prog. Fract. Differ. Appl.
,
4
(
3
), pp.
219
228
.10.18576/pfda/040306
27.
Yang
,
A. M.
,
Zhang
,
Y. Z.
, and
Zhang
,
X. L.
,
2014
, “
The Non-Differentiable Solution for Local Fractional Tricomi Equation Arising in Fractal Transonic Flow by Local Fractional Variational Iteration Method
,”
Adv. Math. Phys.
,
2014
, pp.
1
6
.10.1155/2014/983254
28.
Singh
,
J.
,
Kumar
,
D.
, and
Nieto
,
J. J.
,
2016
, “
A Reliable Algorithm for a Local Fractional Tricomi Equation Arising in Fractal Transonic Flow
,”
Entropy
,
18
(
6
), pp.
206
214
.10.3390/e18060206
29.
Mirzaee
,
F.
, and
Samadyar
,
N.
,
2021
, “
Implicit Meshless Method to Solve 2D Fractional Stochastic Tricomi-Type Equation Defined on Irregular Domain Occurring in Fractal Transonic Flow
,”
Numer. Methods Partial Differ. Equ.
, 37(2), pp. 1781–1799.10.1002/num.22608
30.
Inc
,
M.
,
Korpinar
,
Z.
,
Almohsen
,
B.
, and
Chu
,
Y. M.
,
2021
, “
Some Numerical Solutions of Local Fractional Trocomi Equation in Fractal Transonic Flow
,”
Alex. Eng. J
,
60
(
1
), pp.
1147
1153
.10.1016/j.aej.2020.10.038
31.
Niu
,
X. F.
,
Zhang
,
C. L.
,
Li
,
Z. B.
, and
Zhao
,
Y.
,
2014
, “
Local Fractional Derivative Boundary Value Problems for Tricomi Equation Arising in Fractal Transonic Flow
,”
Abstr. Appl. Anal.
,
2014
, pp.
1
5
.https://doi.org/10.1155/2014/872318
32.
Ziane
,
D.
,
Baleanu
,
D.
,
Belghaba
,
K.
, and
Cherif
,
M. H.
,
2019
, “
Local Fractional Sumudu Decomposition Method for Linear Partial Differential Equations With Local Fractional Derivative
,”
J. King Saud Univ. Sci.
,
31
(
1
), pp.
83
88
.10.1016/j.jksus.2017.05.002
33.
Yan
,
S. P.
,
Jafari
,
H.
, and
Jassim
,
H. K.
,
2014
, “
Local Fractional Adomian Decomposition and Function Decomposition Methods for Laplace Equation Within Local Fractional Operators
,”
Adv. Math. Phys.
,
2014
, pp.
1
7
.10.1155/2014/161580
34.
Yang
,
X. J.
,
Baleanu
,
D.
, and
Zhong
,
W. P.
,
2013
, “
Approximate Solutions for Diffusion Equations on Cantor Space-Time
,”
Proc. Rom. Aca. Ser. A
,
14
(
2
), pp.
127
133
.https://www.researchgate.net/publication/239011799_Approximate_solutions_for_diffusion_equations_on_Cantor_space-time
35.
Yan
,
S.-P.
,
Jafari
,
H.
, and
Jassim
,
H. K.
,
2014
, “
Local Fractional Adomian Decomposition Method for Solving Two Dimensional Heat Conduction Equations Within Local Fractional Operators
,”
J. Adv. Math.
,
2014
(
4
), pp.
1
2582
.
36.
Ziane
,
D.
,
2017
, “
Local Fractional Sumudu Variational Iteration Method for Solving Partial Differential Equations With Local Fractional Derivative
,”
Int. J. Open Probl. Comput. Sci. Math.
,
10
(
3
), pp.
29
42
.10.12816/0048704
37.
Baleanu
,
D.
,
Tenreiro Machado
,
J. A.
,
Cattani
,
C.
,
Baleanu
,
M. C.
, and
Yang
,
X.-J.
,
2014
, “
Local Fractional Variational Iteration Method for Diffusion and Wave Equation on Cantor Sets
,”
Rom. J. Phys.
,
2014
(
1–2
), pp.
1
48
.10.1155/2014/535048
38.
Ziane
,
D.
,
Cherif
,
M. H.
,
Belghaba
,
K.
, and
Belgacem
,
F. B. M.
,
2021
, “
An Accurate Method for Nonlinear Local Fractional Wave-Like Equations With Variable Coefficients
,”
Comput. Methods Differ. Equ.
, 9(3), pp.
774
787
.
39.
Ziane
,
D.
, and
Cherif
,
M. H.
,
2021
, “
A New Analytical Solution of Klein-Gordon Equation With Local Fractional Derivative
,”
Asian-Eur. J. Math.
,
14
(
3
), p.
2150029
.10.1142/S1793557121500297
40.
Alkahtani
,
B. S.
,
Algahtani
,
O. J.
, and
Goswami
,
P.
,
2016
, “
On the Solution of Linear and Nonlinear Partial Differential Equations: Applications of Local Fractional Sumudu Variational Method
,”
J. Math. Comput. Sci.
,
16
(
3
), pp.
445
451
.10.22436/jmcs.016.03.14
41.
Dubey
,
V. P.
,
Singh
,
J.
,
Alshehri
,
A. M.
,
Dubey
,
S.
, and
Kumar
,
D.
,
2021
, “
A Comparative Analysis of Two Computational Schemes for Solving Local Fractional Laplace Equations
,”
Math. Methods Appl. Sci.
,
44
(
17
), pp.
13540
13559
.10.1002/mma.7642
42.
Jafari
,
H.
,
Prasad
,
J. G.
,
Goswami
,
P.
, and
Dubey
,
R. S.
,
2021
, “
Solution of the Local Fractional Generalized KdV Equation Using Homotopy Analysis Method
,”
Fractals
,
29
(
5
), p.
2140014
.10.1142/S0218348X21400144
43.
Jafari
,
H.
,
Jassim
,
H. K.
,
Baleanu
,
D.
, and
Chu
,
Y. M.
,
2021
, “
On the Approximate Solutions for a System of Coupled KdV Equations With Local Fractional Derivative
,”
Fractals
,
29
(
5
), p.
2140012
.10.1142/S0218348X21400120
44.
Jafari
,
H.
,
2021
, “
A New General Integral Transform for Solving Integral Equations
,”
J. Adv. Res.
,
32
, pp.
133
138
.10.1016/j.jare.2020.08.016
45.
Meddahi
,
M.
,
Jafari
,
H.
, and
Ncube
,
M. N.
,
2021
, “
New General Integral Transform Via Atangana–Baleanu Derivatives
,”
Adv. Differ. Equ.
, 385(2021), pp.
1
14
.https://doi.org/10.1186/s13662-021-03540-4
46.
Watugala
,
G. K.
,
1993
, “
Sumudu Transform—A New Integral Transform to Solve Differential Equations and Control Engineering Problems
,”
Int. J. Math. Educ. Sci. Technol.
,
24
(
1
), pp.
35
43
.10.1080/0020739930240105
47.
Watugala
,
G. K.
,
2002
, “
The Sumudu Transform for Functions of Two Variables
,”
Math. Eng. Ind.
,
8
(
4
), pp.
293
302
.
48.
Sahni
,
M.
,
Parikh
,
M.
, and
Sahni
,
R.
,
2021
, “
Sumudu Transform for Solving Ordinary Differential Equation in a Fuzzy Environment
,”
J. Interdiscip. Math.
,
24
(
6
), pp.
1565
1577
.10.1080/09720502.2020.1845468
49.
Belgacem
,
F.
,
Karaballi
,
A. A.
, and
Kalla
,
S. L.
,
2003
, “
Analytical Investigations of the Sumudu Transform and Applications to Integral Production Equations
,”
Math. Probl. Eng
,
2003
(
3
), pp.
103
118
.10.1155/S1024123X03207018
50.
Adomian
,
G.
,
1984
, “
A New Approach to Nonlinear Partial Differential Equations
,”
J. Math. Anal. Appl.
,
102
, pp.
402
434
.
51.
Adomian
,
G.
,
1994
,
Solving Frontier Problems of Physics: The Decomposition Method
,
Kluwer Academic Publishers
,
Boston, MA
.
52.
Yang
,
Y. J.
,
Baleanu
,
D.
, and
Yang
,
X. J.
,
2013
, “
A Local Fractional Variational Iteration Method for Laplace Equation Within Local Fractional Operators
,”
Abstr. Appl. Anal.
,
2013
, pp.
1
6
.https://doi.org/10.1155/2013/202650
53.
Yang
,
X. J.
, and
Baleanu
,
D.
,
2013
, “
Fractal Heat Conduction Problem Solved by Local Fractional Variational Iteration Method
,”
Therm. Sci.
,
17
(
2
), pp.
625
628
.10.2298/TSCI121124216Y
54.
Liu
,
C. F.
,
Kong
,
S. S.
, and
Yuan
,
S. J.
,
2013
, “
Reconstructive Schemes for Variational Iteration Method Within Yang-Laplace Transform With Application to Fractal Heat Conduction Problem
,”
Therm. Sci.
,
17
(
3
), pp.
715
721
.10.2298/TSCI120826075L
You do not currently have access to this content.