Abstract

In this paper, the parametric resonance of third-order parametric nonlinear system with dynamic friction and fractional damping is investigated using the asymptotic method. The approximately analytical solution for the system is first determined, and the amplitude–frequency equation of the oscillator is established. The stability condition of the resonance solution is then obtained by means of Lyapunov theory. Additionally, the effect of the fractional derivative on the system dynamics is analyzed. The effects of the two parameters of the fractional-order derivative, i.e., the fractional coefficient and the fractional order, on the amplitude–frequency curves are investigated.

References

1.
Oldham
,
K. B.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus
,
Academic
,
New York
.
2.
Miller
,
K. S.
, and
Ross
,
B.
,
1993
,
An Introduction to the Fractional Calculus and Fractional Differential Equations
,
John Wile & Sons
,
New York
.
3.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
New York
.
4.
Kochubei
,
A.
, and
Luchko
,
Y.
, eds.,
2019
,
Handbook of Fractional Calculus With Applications, Volume 2: Fractional Differential Equations
,
De Gruyter
,
Berlin/Boston, MA
.
5.
Baleanu
,
D.
, and
Lopes
,
A. M.
, eds.,
2019
,
Handbook of Fractional Calculus With Applications, Volume 7: Applications in Engineering, Life and Social Sciences, Part A
,
De Gruyter
,
Berlin/Boston, MA
.
6.
Tarasov
,
V. E.
, ed.,
2019
,
Handbook of Fractional Calculus With Applications, Volume 4: Applications in Physics, Part A
,
De Gruyter
,
Berlin/Boston, MA
.
7.
Tarasov
,
V. E.
, ed.,
2019
,
Handbook of Fractional Calculus With Applications, Volume 5: Applications in Physics, Part B
,
De Gruyter
,
Berlin/Boston, MA
.
8.
Baleanu
,
D.
, and
Lopes
,
A. M.
, eds.,
2019
,
Handbook of Fractional Calculus With Applications, Volume 8: Applications in Engineering, Life and Social Sciences, Part B
,
De Gruyter
,
Berlin/Boston, MA
.
9.
Bogoliubov
,
N. N.
, and
Mitropolskii
,
Y. A.
,
1961
,
Asymptotic Methods in the Theory of Nonlinear Oscillations
,
Gordon and Breach
,
New York
.
10.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1995
,
Nonlinear Interactions
,
Wiley
,
New York
.
11.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1995
,
Application of Nonlinear Dynamics
,
Wiley
,
New York
.
12.
Mitropolskii
,
Y.
, and
Dao
,
N. V.
,
1997
,
Applied Asymptotic Methods in Nonlinear Oscillations
,
Kluwer Academic Publisher
,
Dordrecht, The Netherlands
.
13.
Sheu
,
L.-J.
,
Chen
,
H.-K.
,
Chen
,
J.-H.
, and
Tam
,
L.-M.
,
2007
, “
Chaotic Dynamics of Fractionally Damped Duffing Equation
,”
Chaos Solitons Fractals
,
32
(
4
), pp.
1459
1468
.10.1016/j.chaos.2005.11.066
14.
Cao
,
J.
,
Ma
,
C.
,
Xie
,
H.
, and
Jiang
,
Z.
,
2010
, “
Nonlinear Dynamic of Duffing System With Fractional Order Damping
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
4
), p.
041012
.10.1115/1.4002092
15.
Shen
,
Y.
,
Yang
,
S.
,
Xing
,
H.
, and
Gao
,
G.
,
2012
, “
Primary Resonance of Duffing Oscillator With Fractional–Order Derivative
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
7
), pp.
3092
3100
.10.1016/j.cnsns.2011.11.024
16.
Shen
,
Y.
,
Yang
,
S.
,
Xing
,
H.
, and
Ma
,
H.
,
2012
, “
Primary Resonance of Duffing Oscillator With Two Kinds of Fractional-Order Derivatives
,”
Int. J. Non-Linear Mech.
,
47
(
9
), pp.
975
983
.10.1016/j.ijnonlinmec.2012.06.012
17.
Chen
,
L.
,
Wang
,
W.
,
Li
,
Z.
, and
Zhu
,
W.
,
2013
, “
Stationary Response of Duffing Oscillator With Hardening Stiffness and Fractional Derivative
,”
Int. J. Non-Linear Mech.
,
48
, pp.
44
50
.10.1016/j.ijnonlinmec.2012.08.001
18.
Xu
,
Y.
,
Li
,
Y.
,
Liu
,
D.
,
Jia
,
W.
, and
Huang
,
H.
,
2013
, “
Response of Duffing Oscillator With Fractional Damping and Random Phase
,”
Nonlinear Dyn.
,
74
(
3
), pp.
745
753
.10.1007/s11071-013-1002-9
19.
Leung
,
A. Y. T.
,
Yang
,
H. X.
, and
Zhu
,
P.
,
2014
, “
Bifurcation of Duffing Oscillator Having Nonlinear Fractional Derivative Feedback
,”
Int. J. Bifurc. Chaos
,
24
(
03
), p.
1450028
.10.1142/S021812741450028X
20.
Syta
,
A.
,
Litak
,
G.
,
Lenci
,
S.
, and
Scheffler
,
M.
,
2014
, “
Chaotic Vibrations of the Duffing System With Fractional Damping
,”
J. Nonlinear Sci.
,
24
(
1
), p.
013107
.10.1063/1.4861942
21.
Khang
,
N. V.
, and
Chien
,
T. Q.
,
2016
, “
Subharmonic Resonance of Duffing Oscillator With Fractional-Order Derivative
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051018
.10.1115/1.4032854
22.
Shen
,
Y.
,
Wei
,
P.
, and
Yang
,
S.-P.
,
2014
, “
Primary Resonance of Fractional-Order Van Der Pol Oscillator
,”
Nonlinear Dyn.
,
77
(
4
), pp.
1629
1642
.10.1007/s11071-014-1405-2
23.
Shen
,
Y.
,
Wei
,
P.
,
Sui
,
C.
, and
Yang
,
S.
,
2014
, “
Subharmonic Resonance of Van Der Pol Oscillator With Fractional-Order Derivative
,”
Math. Probl. Eng.
,
2014
, pp.
1
17
.10.1155/2014/738087
24.
Shen
,
Y.
,
Yang
,
S.
, and
Sui
,
C.
,
2014
, “
Analysis on Limit Cycle of Fractional-Order Van Der Pol Oscillator
,”
Chaos, Solitons Fractals
,
67
, pp.
94
102
.10.1016/j.chaos.2014.07.001
25.
Khang
,
N. V.
,
Thuy
,
B. T.
, and
Chien
,
T. Q.
,
2016
, “
Resonance Oscillation of Third Order Forced Van Der Pol System With Fractional Order Derivative
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041030
.10.1115/1.4033555
26.
Rand
,
R. H.
,
Sah
,
S. M.
, and
Suchorsky
,
M. K.
,
2010
, “
Fractional Mathieu Equation
,”
Commun. Nonlinear Sci. Numer. Simulat.
,
15
(
11
), pp.
3254
3262
.10.1016/j.cnsns.2009.12.009
27.
Leung
,
A. Y. T.
,
Guo
,
Z.
, and
Yang
,
H. X.
,
2012
, “
Transition Curves and Bifurcations of a Class of Fractional Mathieu-Type Equations
,”
Int. J. Bifurc. Chaos
,
22
(
11
), p.
1250275
.10.1142/S0218127412502756
28.
Wen
,
S.
,
Shen
,
Y.
,
Li
,
X.
,
Yang
,
S.
, and
Xing
,
H.
,
2015
, “
Dynamic Analysis of Fractional-Order Mathieu Equation
,”
J. Vibroeng.
,
17
, pp.
2696
2079
.https://www.extrica.com/article/15855
29.
Dao
,
N. V.
,
1979
,
Nonlinear Oscillations of Higher Order Systems
,
NCSR
,
Hanoi, Vietnam
.
30.
Dao
,
N. V.
,
1979
, “
Nonlinear Oscillation of Third Order Systems—Part 1: Non-Autonomuos Systems
,”
J. Tech. Phys.
,
20
(
4
), pp.
511
519
.
31.
Dao
,
N. V.
,
1980
, “
Nonlinear Oscillation of Third Order Systems—Part 2: Autonomuos Systems
,”
J. Tech. Phys.
,
21
(
1
), pp.
125
134
.
32.
Dao
,
N. V.
,
1980
, “
Nonlinear Oscillation of Third Order Systems—Part 3: Parametric Systems
,”
J. Tech. Phys.
,
21
(
2
), pp.
253
265
.
33.
Dao
,
N. V.
,
1998
,
Stability of Dynamic Systems With Examples and Solved Problems
,
VNU Publishing House
,
Hanoi, Vietnam
.
34.
Zhang
,
W.
, and
Shimizu
,
N.
,
1998
, “
Numerical Algorithm for Dynamic Problems Involving Fractional Operator
,”
Int. J. JSME Ser. C
,
41
(
3
), pp.
364
370
.10.1299/jsmec.41.364
35.
Khang
,
N. V.
,
Lac
,
D. V.
, and
Chung
,
P. T.
,
2021
, “
On Two Improved Numerical Algorithms for Vibration Analysis of Systems Involving Fractional Derivatives
,”
Viet. J. Mech.
,
43
(
2
), pp.
171
182
.10.15625/0866-7136/15758
36.
Tseng
,
C.-C.
,
Pei
,
S.-C.
, and
Hsia
,
S.-C.
,
2000
, “
Computation of Fractional Derivatives Using Fourier Transform and Digital FIR Differentiator
,”
Signal Process.
,
80
(
1
), pp.
151
159
.10.1016/S0165-1684(99)00118-8
You do not currently have access to this content.