Abstract

We present a description of certain limits associated with the Schrödinger equation, the classical wave equation, and Maxwell equations. Such limits are mainly characterized by the competition of two fundamental scales. More precisely: (1) The competition of an exploratory wavelength and the scale of fluctuations is associated with the media where the propagation takes place. From that, the universal behaviors arise eikonal and anti-eikonal. (2) In the context above, it is specially relevant and promising the study of propagation of electromagnetic waves in a media with a self-similar structure, like a fractal one. These systems offer the suggestive scenario where the eikonal and anti-eikonal behaviors are simultaneous. This kind of study requires large and massive computations that are mainly possible in the framework of the cloud computing. Recently, we started to carry out this task. (3) Finally and as a collateral aspect, we analyze the Planck constant in the interval 0h.

References

1.
Yakushevich, Ludmila V., 2004,
Nonlinear Physics of DNA
, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
2.
Born
,
M.
, and
Wolf
,
E.
,
1998
,
Principles of Optics
,
Cambridge University Press
,
Cambridge, UK
.
3.
Vázquez
,
L.
,
Jiménez
,
S.
, and
Shvartsburg
,
A.
,
2016
, “
The Wave Equation: From Eikonal to Anti-Eikonal Approximation
,”
Mod. Electron. Mater.
,
2
(
2
), pp.
51
53
.10.1016/j.moem.2016.11.001
4.
Goldstein
,
H.
,
1959
,
Classical Mechanics
,
Addison-Wesley Publishing, Boston, MA
.
5.
Rañada
,
A.
, and
Vázquez
,
L.
,
1979
, “
Kinks and the Heisenberg Uncertainty Principle
,”
Phys. Rev. D
,
19
(
2
), pp.
493
495
.10.1103/PhysRevD.19.493
6.
Vázquez
,
L.
,
1986
, “
Time-Energy Heisenberg-Type Relations for Nonlinear Classical Fields
,”
Phys. Rev. D
,
33
, pp.
2478
2480
.10.1103/PhysRevD.33.2478
7.
Shvartsburg
,
A.
,
Pecherkin
,
V.
,
Jiménez
,
S.
,
Vasilyak
,
L.
,
Vázquez
,
L.
, and
Vetchinin
,
S.
,
2021
, “
Resonant Phenomena in All Rectangular Dielectric Circuit Induced by Plane Wave
,”
J. Phys. D Appl. Phys.
,
54
(
7
), p.
075004
.10.1088/1361-6463/abc280
8.
Mielke
,
E.
,
1980
, “
On Exact Solutions of the Nonlinear Heisenberg–Klein–Gordon Equation in a Space–Time of Constant Spacelike Curvature
,”
J. Math. Phys.
,
21
(
3
), pp.
543
546
.10.1063/1.524452
9.
Vázquez
,
L.
,
1983
,
Libro-Homenaje al Profesor Armando Duran Miranda
,
C.
Sánchez del Río
, ed.,
Universidad Complutense de Madrid
.
10.
Nelson
,
H.
,
1967
,
Dynamical Theories of Brownian Motion
,
Princeton University Press
,
Princeton, NJ
.
11.
Guerra
,
F.
,
1981
, “
Structural Aspects of Stochastic Mechanics and Stochastic Field Theory
,”
Phys. Rep.
,
77
(
3
), pp.
263
312
.10.1016/0370-1573(81)90078-8
12.
Kritikos
,
H.
, and
Jaggard
,
D.
,
1990
,
Recent Advances in Electromagnetic Theory
,
Springer
, Berlin.
13.
Takeda
,
M.
,
Kirihara
,
S.
,
Miyamoto
,
Y.
,
Sakoda
,
K.
, and
Honda
,
K.
,
2004
, “
Localization of Electromagnetic Waves in Three Dimensional Fractal Cavities
,”
Phys. Rev. Lett.
,
92
(
9
), p.
093902
.10.1103/PhysRevLett.92.093902
14.
Tarasov
,
V.
,
2015
, “
Electromagnetic Waves in Non-Integer Dimensional Spaces and Fractals
,”
Chaos, Solitons Fractals
,
81
, pp.
38
42
.10.1016/j.chaos.2015.08.017
15.
Vázquez
,
L.
, and
Jaffari
,
H.
,
2013
, “Fractional Calculus: Theory and Numerical Methods,”
Cent. Eur. J. Phys.
,
11
(
10
), epub.10.2478/s11534-013-0291-4
16.
Konotop
,
V.
,
Fei
,
Z.
, and
Vázquez
,
L.
,
1993
, “
Wave Interaction With a Fractal Layer
,”
Phys. Rev. E
,
48
, pp.
4044
4048
.10.1103/PhysRevE.48.4044
17.
Bulgakov
,
S.
,
Konotop
,
V.
, and
Vázquez
,
L.
,
1995
, “
Wave Interaction With a Random Fat Fractal: Dimension of the Reflection Coefficient
,”
Waves Random Media
,
5
(
1
), pp.
9
18
.10.1088/0959-7174/5/1/002
18.
Kirihara
,
S.
,
Takeda
,
M.
,
Sakoda
,
K.
,
Honda
,
K.
, and
Miyamoto
,
Y.
,
2006
, “
Strong Localization of Microwave in Photonic Fractals With Menger-Sponge Structure
,”
J. Eur. Ceram. Soc.
,
26
(
10–11
), pp.
1861
1864
.10.1016/j.jeurceramsoc.2005.09.014
19.
Vázquez
,
L.
,
Velasco
,
M.
,
Vázquez-Poletti
,
J.
,
Llorente
,
I.
,
Usero
,
D.
, and
Jiménez
,
S.
,
2018
, “
Modeling and Simulation of the Atmospheric Dust Dynamic: Fractional Calculus and Cloud Computing
,”
Int. J. Numer. Anal. Model.
,
15
, pp.
74
85
.
20.
Vázquez-Poletti
,
J.
,
Velasco
,
M.
,
Jiménez
,
S.
,
Usero
,
D.
,
Llorente
,
I. M.
,
Vázquez
,
L.
,
Korablev
,
O.
,
Belyaev
,
D.
,
Patsaeva
,
M.
, and
Khatuntsev
,
I.
,
2019
, “
Public “Cloud” Provisioning for Venus Express Vmc Image Processing
,”
Commun. Appl. Math. Comput.
,
1
(
2
), pp.
253
261
.10.1007/s42967-019-00014-z
21.
Veselago
,
V.
,
1968
, “
The Electrodynamics of Substances With Simultaneously Negative Values of ε and μ
,”
Sov. Phys. Usp.
,
10
(
4
), pp.
509
514
.10.1070/PU1968v010n04ABEH003699
22.
Pendry
,
J.
,
2000
, “
Negative Refraction Makes a Perfect Lens
,”
Phys. Rev. Lett.
,
85
(
18
), pp.
3966
3969
.10.1103/PhysRevLett.85.3966
23.
Marques
,
R.
,
Martin
,
F.
, and
Sorolla
,
M.
,
2008
,
Metamaterials With Negative Parameters: Theory and Microwave Applications
,
Wiley
, Hoboken, NJ.
24.
Shvartsburg
,
A. B.
, and
Erokhin
,
N. S.
,
2011
,
Electromagnetic Acoustic Waves Metamaterials Structures (Scientific Session Physical Sciences Division Russian Academy Sciences)
, Physics-Uspekhi, Vol.
54
, pp.
1161
1192
.
25.
Shvartsburg
,
A.
, and
Maradudin
,
A.
,
2013
,
Waves in Gradient Metamaterials
,
World Scientific
, Singapore.
26.
Lapine
,
M.
,
Shadrivov
,
I.
, and
Kivshar
,
Y.
,
2014
, “
Colloquium: Nonlinear Metamaterials
,”
Rev. Mod. Phys.
,
86
(
3
), pp.
1093
1123
.10.1103/RevModPhys.86.1093
27.
Shvartsburg
,
A.
,
Pecherkin
,
V.
,
Vasilyak
,
L.
,
Vetchinin
,
S.
, and
Fortov
,
V.
,
2017
, “
Resonant Microwave Fields and Negative Magnetic Response, Induced by Displacement Currents in Dielectric Rings: Theory and the First Experiments
,”
Sci. Rep. (Nat. Group)
,
7
(
1
), pp.
2180
2188
.10.1038/s41598-017-02310-1
28.
Shvartsburg
,
A.
,
Pecherkin
,
V.
,
Jiménez
,
S.
,
Vasilyak
,
L.
,
Vetchinin
,
S.
,
Fortov
,
V.
, and
Vázquez
,
L.
,
2018
, “
Sub Wavelength Dielectric Elliptical Element as an Anisotropic Magnetic Dipole for Inversions of Magnetic Field
,”
J. Phys. D Appl. Phys.
,
51
(
47
), p.
475001
.10.1088/1361-6463/aae1eb
29.
Shvartsburg
,
A.
,
Jiménez
,
S.
,
Erokhin
,
N.
, and
Vázquez
,
L.
,
2019
, “
Tunneling and Filtering of Degenerate Microwave Modes in a Polarization-Dependent Waveguide Containing Index Gradient Barriers
,”
Phys. Rev. Appl.
,
11
(
4
), p.
044056
.10.1103/PhysRevApplied.11.044056
You do not currently have access to this content.