Abstract

We compare three ways to pose the set of index 3 differential algebraic equations (DAEs) associated with the constrained multibody dynamics problem formulated in absolute coordinates. The first approach, named rA, works directly with the orientation matrix and therefore eschews the need for generalized coordinates used to produce the orientation matrix A. The approach is informed by the fact that rotation matrices belong to the SO(3) Lie matrix group. The second approach, referred to herein as rp, employs Euler parameters; the third, referred to as , uses Euler angles. In all cases, the index 3 DAE problem is solved via a first-order implicit numerical integrator. We note a roughly twofold speedup of rA over rε and a 1.2–1.3 times speedup of rε over rp. The tests were carried out in conjunction with four 3D mechanisms. The improvements in simulation speed of the rA approach are traced back to a simpler form of the equations of motion and more concise Jacobians that enter the numerical solution. The contributions made herein are twofold. First, we provide first-order variations of all the quantities that enter the rA formulation when used in the context of implicit integration; i.e., sensitivity of the kinematic constraints for all lower pair joints, as well as the sensitivity of the constraint reaction forces. Second, to the best of our knowledge, there is no other contribution that compares head to head the solution efficiency of rA, rp, and rε in the context of the multibody dynamics problem posed in absolute coordinates.

References

1.
Orlandea
,
N.
,
Chace
,
M. A.
, and
Calahan
,
D. A.
,
1977
, “
A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems – Part I and Part II
,”
Trans. ASME J. Eng. Ind.
,
99
(
3
), pp.
773
784
.10.1115/1.3439312
2.
Brenan
,
K. E.
,
Campbell
,
S. L.
, and
Petzold
,
L. R.
,
1996
,
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
, 2nd ed.,
SIAM Classics in Appl. Math. SIAM
,
Philadelphia, PA
.
3.
Haug
,
E. J.
,
1989
,
Computer-Aided Kinematics and Dynamics of Mechanical Systems Volume-I
,
Prentice Hall
,
Englewood Cliffs, NJ
.
4.
Marsden
,
J. E.
, and
Ratiu
,
T. S.
,
1994
,
Introduction to Mechanics and Symmetry, Volume 17 of Texts in Applied Mathematics
,
Springer-Verlag
,
New York
.
5.
Varadarajan
,
V.
,
2013
,
Lie Groups, Lie Algebras, and Their Representations
, Vol.
102
,
Springer Science & Business
, New York.
6.
Müller
,
A.
, and
Maisser
,
P.
,
2003
, “
A Lie-Group Formulation of Kinematics and Dynamics of Constrained MBS and Its Application to Analytical Mechanics
,”
Multibody System Dynamics
,
9
(
4
), pp.
311
352
.10.1023/A:1023321630764
7.
Park
,
J.
, and
Chung
,
W.-K.
,
2005
, “
Geometric Integration on Euclidean Group With Application to Articulated Multibody Systems
,”
IEEE Trans. Rob.
,
21
(
5
), pp.
850
863
.10.1109/TRO.2005.852253
8.
Brüls
,
O.
,
Cardona
,
A.
, and
Arnold
,
M.
,
2012
, “
Lie Group Generalized-α Time Integration of Constrained Flexible Multibody Systems
,”
Mech. Mach. Theory
,
48
, pp.
121
137
.10.1016/j.mechmachtheory.2011.07.017
9.
Terze
,
Z.
,
Müller
,
A.
, and
Zlatar
,
D.
,
2015
, “
Lie-Group Integration Method for Constrained Multibody Systems in State Space
,”
Multibody Syst. Dyn.
,
34
(
3
), pp.
275
305
.10.1007/s11044-014-9439-2
10.
Wieloch
,
V.
, and
Arnold
,
M.
,
2021
, “
BDF Integrators for Constrained Mechanical Systems on Lie Groups
,”
J. Comput. Appl. Math.
,
387
, p.
112517
.10.1016/j.cam.2019.112517
11.
Euler
,
L.
,
1776
, “
Formulae Generales Pro Translatione Quacunque Corporum Rigidorum
,”
Novi Commentarii Academiae Scientiarum Petropolitanae
, Typis Academiae Scientiarum, Saint Petersburg, Russia, pp.
189
207
.
12.
Rodrigues
,
O.
,
1816
, “
De l'attraction des sphéroides
, Correspondence sur l'École Impériale Polytechnique,” PhD thesis,
Thesis for the Faculty of Science of the University of Paris
, Paris, France.
13.
Taves
,
J.
,
Kissel
,
A.
, and
Negrut
,
D.
,
2020
, “On an Exponential Map Approach for Rigid Body Kinematics and Dynamics Analysis,”
Simulation-Based Engineering Laboratory, University of Wisconsin-Madison
, Madison, WI, Report No.
TR-2020-08
.https://sbel.wisc.edu/technicalreports/
14.
Sonneville
,
V.
, and
Brüls
,
O.
,
2014
, “
A Formulation on the Special Euclidean Group for Dynamic Analysis of Multibody Systems
,”
J. Comput. Nonlinear Dyn.
,
9
(
4
), p. 041002.10.1115/1.4026569
15.
Iserles
,
A.
,
Munthe-Kaas
,
H.
,
Nørsett
,
S.
, and
Zanna
,
A.
,
2000
, “
Lie-Group Methods
,”
Acta Numerica
,
9
, pp.
215
365
.10.1017/S0962492900002154
16.
Negrut
,
D.
,
Rampalli
,
R.
,
Ottarsson
,
G.
, and
Sajdak
,
A.
,
2007
, “
On the Use of the HHT Method in the Context of Index 3 Differential Algebraic Equations of Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dynam.
,
2
(1), 73–85.10.1115/DETC2005-85096
17.
Negrut
,
D.
,
Jay
,
L.
, and
Khude
,
N.
,
2009
, “
A Discussion of Low-Order Numerical Integration Formulas for Rigid and Flexible Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dynam.
,
4
, p. 021008–1.10.1115/1.3079784
18.
Taves
,
J.
,
Kissel
,
A.
, and
Negrut
,
D.
,
2021
, Software and models for the rA formulation,
Simulation-Based Engineering Laboratory, University of Wisconsin-Madison
, Madison, WI, https://github.com/uwsbel/public-metadata/tree/master/2021/ASME/rA-formulation
19.
Nikravesh
,
P.
,
1988
,
Computer-Aided Analysis of Mechanical Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
20.
ECMA
,
2013
, The JSON Data Interchange Format, ECMA International, Geneva, Switzerland, Report No. ECMA-404.
21.
Masarati
,
P.
,
Morandini
,
M.
, and
Mantegazza
,
P.
,
2014
, “
An Efficient Formulation for General-Purpose Multibody/Multiphysics Analysis
,”
J. Comput. Nonlinear Dyn.
,
9
(
4
), p.
7
.10.1115/1.4025628
22.
Tasora
,
A.
,
Serban
,
R.
,
Mazhar
,
H.
,
Pazouki
,
A.
,
Melanz
,
D.
,
Fleischmann
,
J.
,
Taylor
,
M.
,
Sugiyama
,
H.
, and
Negrut
,
D.
,
2016
, “
Chrono: An Open Source Multi-Physics Dynamics Engine
,”
High Performance Computing in Science and Engineering – Lecture Notes in Computer Science
,
T.
Kozubek
, ed.,
Springer International Publishing
, Cham, Switzerland, pp.
19
49
.
23.
Holzinger
,
S.
, and
Gerstmayr
,
J.
,
2021
, “
Time Integration of Rigid Bodies Modelled With Three Rotation Parameters
,”
Multibody Syst. Dyn.
,
53
(
4
), pp.
345
378
.10.1007/s11044-021-09778-w
24.
Negrut
,
D.
, and
Dyer
,
A.
,
2004
,
ADAMS/Solver Primer
,
MSC Software Documentation
,
Ann Arbor
.
25.
Wehage
,
R. A.
, and
Haug
,
E. J.
,
1982
, “
Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems
,”
J. Mech. Des.
,
104
(
1
), pp.
247
255
.10.1115/1.3256318
26.
Betsch
,
P.
, and
Leyendecker
,
S.
,
2006
, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part ii: Multibody Dynamics
,”
Int. J. Numer. Methods Eng.
,
67
(
4
), pp.
499
552
.10.1002/nme.1639
27.
Negrut
,
D.
,
Serban
,
R.
, and
Tasora
,
A.
,
2017
, “
Posing Multibody Dynamics With Friction and Contact as a Differential Complementarity Problem
,”
ASME J. Comput. Nonlinear Dynam.
,
13
(
1
), p.
014503
.
You do not currently have access to this content.