Abstract

The hydraulic turbine regulating system (HTRS) plays an important role in the safe and stable operation of hydropower stations. In this paper, a fixed-time integral sliding mode controller (FTISMC) is designed to make the nonlinear HTRS with disturbances stable in a fixed time. The HTRS is a highly complex, strongly coupled, nonlinear nonminimum phase system, which can ensure the frequency and rotor angle of generator stability by adjusting the guide vane opening. In order to decouple the nonlinear HTRS, the input/output feedback linearization is applied to establish the relationship between the control input and the output of the HTRS. Based on sliding mode control (SMC) theory and fixed-time stability theory, FTISMC is proposed to stabilize the HTRS in a fixed time. Compared with the finite time control method (FTCM), the convergence time of nonlinear HTRS under FTISMC is independent of initial conditions and can be exactly estimated. Meanwhile, the integral sliding surface can avoid singularity, thus eliminating the chattering phenomenon. Finally, the numerical simulation is implemented to demonstrate the superior performances of the proposed FTISMC than the existing PID, SMC, and FTMC.

References

1.
International Hydropower Association
,
2019
, “
Hydropower Status Report
”, International Hydropower Association, London, UK, accessed Sept. 2, 2019, https://www.hydropower.org/statusreport
2.
International Hydropower Association
,
2019
, “
Fast facts about hydropower
”, International Hydropower Association, London, UK, accessed June 18, 2019, https://www.hydropower.org/facts
3.
Huang
,
S. H.
,
Zhou
,
B.
,
Bu
,
S. Q.
,
Li
,
C. B.
,
Zhang
,
C.
,
Wang
,
H. Z.
, and
Wang
,
T.
,
2019
, “
Robust Fixed-Time Sliding Mode Control for Fractional-Order Nonlinear Hydro-Turbine Governing System
,”
Renewable Energy
,
139
(
2019
), pp.
447
458
.10.1016/j.renene.2019.02.095
4.
Xiong
,
L. Y.
,
Wang
,
J.
,
Mi
,
X.
, and
Khan
,
M. W.
,
2018
, “
Fractional Order Sliding Mode Based Direct Power Control of Grid-Connected DFIG
,”
IEEE Trans. Power Syst.
,
33
(
3
), pp.
3087
3096
.10.1109/TPWRS.2017.2761815
5.
Xu
,
B. B.
,
Chen
,
D. Y.
,
Patelli
,
E.
,
Shen
,
H. J.
, and
Park
,
J. H.
,
2019
, “
Mathematical Model and Parametric Uncertainty Analysis of a Hydraulic Generating System
,”
Renewable Energy
,
136
(
2019
), pp.
1217
1230
.10.1016/j.renene.2018.09.095
6.
Zhu
,
D. Y.
, and
Guo
,
W. C.
,
2019
, “
Setting Condition of Surge Tank Based on Stability of Hydro-Turbine Governing System Considering Nonlinear Penstock Head Loss
,”
Int. J. Elec. Power
,
113
(
2019
), pp.
372
382
.10.1016/j.ijepes.2019.05.061
7.
Guo
,
W. C.
, and
Yang
,
J. D.
,
2018
, “
Modeling and Dynamic Response Control for Primary Frequency Regulation of Hydro-Turbine Governing System With Surge Tank
,”
Renewable Energy.
,
121
(
2018
), pp.
173
187
.10.1016/j.renene.2018.01.022
8.
Zhang
,
H.
,
Chen
,
D. Y.
,
Guo
,
P. C.
,
Luo
,
X. Q.
, and
George
,
A.
,
2018
, “
A Novel Surface-Cluster Approach Towards Transient Modeling of Hydro-Turbine Governing Systems in the Start-Up Process
,”
Energy Convers. Manage.
,
165
(
2018
), pp.
861
868
.10.1016/j.enconman.2018.03.097
9.
Jiang
,
C. W.
,
Ma
,
Y. C.
, and
Wang
,
C. M.
,
2006
, “
PID Controller Parameters Optimization of Hydro-Turbine Governing Systems Using Deterministic-Chaotic-Mutation Evolutionary Programming (DCMEP)
,”
Energy Convers. Manage.
,
47
(
9–10
), pp.
1222
1230
.10.1016/j.enconman.2005.07.009
10.
Yuan
,
X. H.
,
Chen
,
Z. H.
,
Yuan
,
Y. B.
,
Huang
,
Y. H.
,
Li
,
X. S.
, and
Li
,
W. W.
,
2016
, “
Sliding Mode Controller of Hydraulic Generator Regulating System Based on the Input/Output Feedback Linearization Method
,”
Math. Comput. Simul.
,
119
(
2016
), pp.
18
34
.10.1016/j.matcom.2015.08.020
11.
Yi
,
Y. P.
, and
Chen
,
D. Y.
,
2019
, “
Disturbance Observer-Based Backstepping Sliding Mode Fault-Tolerant Control for the Hydro-Turbine Governing System With Dead-Zone Input
,”
ISA Trans.
,
88
(
2019
), pp.
127
141
.10.1016/j.isatra.2018.11.032
12.
Yuan
,
X. H.
,
Chen
,
Z. H.
,
Yuan
,
Y. B.
, and
Huang
,
Y. H.
,
2015
, “
Design of Fuzzy Sliding Mode Controller for Hydraulic Turbine Regulating System Via Input State Feedback Linearization Method
,”
Energy
,
93
(
2015
), pp.
173
187
.10.1016/j.energy.2015.09.025
13.
Liu
,
J. X.
,
Wu
,
L. G.
,
Wu
,
C. W.
,
Luo
,
W. S.
, and
Franquelo
,
L. G.
,
2019
, “
Event-Triggering Dissipative Control of Switched Stochastic Systems Via Sliding Mode
,”
Automatica
,
103
, pp.
261
273
.10.1016/j.automatica.2019.01.029
14.
Yin
,
Y. F.
,
Liu
,
J. X.
,
Sánchez
,
J. A.
,
Wu
,
J. G.
,
Vazquez
,
S.
,
Leon
,
J. I.
, and
Franquelo
,
L. G.
,
2019
, “
Observer-Based Adaptive Sliding Mode Control of NPC Converters: An RBF Neural Network Approach
,”
IEEE Trans. Power Electr.
,
34
(
4
), pp.
3831
3841
.10.1109/TPEL.2018.2853093
15.
Wang
,
B.
,
Xue
,
J. Y.
,
Wu
,
F. J.
, and
Zhu
,
D. L.
,
2018
, “
Finite Time Takagi-Sugeno Fuzzy Control for Hydro-Turbine Governing System
,”
J. Vib. Control
,
24
(
5
), pp.
1001
1010
.10.1177/1077546316655912
16.
Zhang
,
R. F.
,
Chen
,
D. Y.
,
Yao
,
W.
,
Ba
,
D. D.
, and
Ma
,
X. Y.
,
2017
, “
Non-Linear Fuzzy Predictive Control of Hydroelectric System
,”
IET Gener. Trans. Dis.
,
11
(
8
), pp.
1966
1975
.10.1049/iet-gtd.2016.1300
17.
Wu
,
F. J.
,
Li
,
F.
,
Chen
,
P.
, and
Wang
,
B.
,
2019
, “
Finite-Time Control for a Fractional-Order Non-Linear HTRS
,”
IET Renewable Power Gen.
,
13
(
4
), pp.
633
639
.10.1049/iet-rpg.2018.5734
18.
Wu
,
F. J.
,
Ding
,
J. L.
, and
Wang
,
Z. Z.
,
2016
, “
Robust Finite-Time Terminal Sliding Mode Control for a Francis Hydro-Turbine Governing System
,”
J. Control Sci. Eng.
,
2016
(
2016
), pp.
1
8
.10.1155/2016/2518734
19.
Wang
,
B.
,
Ding
,
J.
,
Wu
,
F. J.
, and
Zhu
,
D. L.
,
2016
, “
Robust Finite-Time Control of Fractional-Order Nonlinear Systems Via Frequency Distributed Model
,”
Nonlinear Dyn.
,
85
(
4
), pp.
2133
2142
.10.1007/s11071-016-2819-9
20.
Yin
,
L. J.
,
Deng
,
Z. H.
,
Huo
,
B. Y.
, and
Xia
,
Y. Q.
,
2019
, “
Finite-Time Synchronization for Chaotic Gyros Systems With Terminal Sliding Mode Control
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
49
(
6
), pp.
1131
1140
.10.1109/TSMC.2017.2736521
21.
Ni
,
J. K.
,
Liu
,
L.
,
Liu
,
C. X.
,
Hu
,
X. Y.
, and
Li
,
S. L.
,
2017
, “
Fast Fixed-Time Nonsingular Terminal Sliding Mode Control and Its Application to Chaos Suppression in Power System
,”
IEEE Trans. Circuits-II
,
64
(
2
), pp.
151
155
.10.1109/TCSII.2016.2551539
22.
Aghababa
,
M. P.
,
2013
, “
Design of a Chatter-Free Terminal Sliding Mode Controller for Nonlinear Fractional-Order Dynamical Systems
,”
Int. J. Control
,
86
(
10
), pp.
1744
1756
.10.1080/00207179.2013.796068
23.
Wang
,
J. B.
,
Liu
,
C. X.
,
Wang
,
Y.
, and
Zheng
,
G. C.
,
2018
, “
Fixed Time Integral Sliding Mode Controller and Its Application to the Suppression of Chaotic Oscillation in Power System
,”
Chin. Phys. B
,
27
(
7
), p.
070503
.10.1088/1674-1056/27/7/070503
24.
Kanti
,
S. M.
,
Ark
,
D.
,
Pankhuri
,
A.
, and
Daijiry
,
N.
,
2018
, “
Chattering Free Robust Adaptive Integral Higher Order Sliding Mode Control for Load Frequency Problems in Multi-Area Power Systems
,”
IET Control Theory A.
,
12
(
9
), pp.
1216
1227
. 10.1049/iet-cta.2017.0735
25.
Chen
,
Z. H.
,
Yuan
,
X. H.
,
Wu
,
X. T.
,
Yuan
,
Y. B.
, and
Lei
,
X. H.
,
2019
, “
Global Fast Terminal Sliding Mode Controller for Hydraulic Turbine Regulating System With Actuator Dead Zone
,”
J. Franklin Inst.
,
356
(
15
), pp.
8366
8387
.10.1016/j.jfranklin.2019.08.006
26.
Cao
,
Z.
,
Niu
,
Y. G.
, and
Zhao
,
H. J.
,
2018
, “
Finite-Time Sliding Mode Control of Markovian Jump Systems Subject to Actuator Faults
,”
Int. J. Control Autom.
,
16
(
5
), pp.
2282
2289
.10.1007/s12555-017-0501-8
27.
Huang
,
S. H.
,
Zhou
,
B.
,
Li
,
C. B.
,
Wu
,
Q. W.
,
Xia
,
S. W.
,
Wang
,
H. Z.
, and
Yang
,
H. Y.
,
2018
, “
Fractional-Order Modeling and Sliding Mode Control of Energy-Saving and Emission-Reduction Dynamic Evolution System
,”
Int. J. Elec. Power
,
100
, pp.
400
410
.10.1016/j.ijepes.2018.02.045
28.
Lopez-Ramirez
,
F.
,
Polyakov
,
A.
,
Efimov
,
D.
, and
Perruquetti
,
W.
,
2018
, “
Finite-Time and Fixed-Time Observer Design: Implicit Lyapunov Function Approach
,”
Automatica
,
87
(
2018
), pp.
52
60
.10.1016/j.automatica.2017.09.007
29.
Polyakov
,
A.
,
2012
, “
Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Control Systems
,”
IEEE Trans. Autom. Control
,
57
(
8
), pp.
2106
2110
.10.1109/TAC.2011.2179869
30.
Wang
,
X.
,
Guo
,
J.
, and
Tang
,
S. J.
,
2018
, “
Neural Network-Based Multivariable Fixed-Time Terminal Sliding Mode Control for Re-Entry Vehicles
,”
IET Control Theory A.
,
12
(
12
), pp.
1763
1772
.10.1049/iet-cta.2017.1309
You do not currently have access to this content.