A vibrating system with impacts, which can be applied to model the cantilever beam with a mass at its end and two-sided impacts against a harmonically moving frame, is investigated. The objective of this study is to determine in which regions of parameters characterizing system, the motion of the oscillator is periodic and stable. An analytical method to obtain stable periodic solutions to the equations of motion on the basis of Peterka's approach is presented. The results of analytical investigations have been compared to the results of numerical simulations. The ranges of stable periodic solutions determined analytically and numerically with bifurcation diagrams of spectra of Lyapunov exponents show a very good conformity. The locations of stable periodic solution regions of the system with a movable frame and two-sided impacts differ substantially from the locations of stable periodic solution regions for the system: (i) with a movable frame and one-sided impacts and (ii) with an immovable frame and two-sided impacts.

References

1.
Blazejczyk-Okolewska
,
B.
,
Czolczynski
,
K.
, and
Kapitaniak
,
T.
,
2004
, “
Classification Principles of Types of Mechanical Systems With Impacts—Fundamental Assumptions and Rules
,”
Eur. J. Mech. A, Solids
,
23
(
3
), pp.
517
537
.
2.
Blazejczyk-Okolewska
,
B.
,
Czolczynski
,
K.
, and
Kapitaniak
,
T.
,
2005
, “
Determination of Geometrical Conditions of Assembly and Impacts in Classified Types of Mechanical Systems With Impacts
,”
Eur. J. Mech. A, Solids
,
24
(
2
), pp.
277
291
.
3.
Blazejczyk-Okolewska
,
B.
, and
Serweta
,
W.
,
2013
, “
A Method to Determine Structural Patterns of Mechanical Systems With Impacts
,”
Math. Prob. Eng.
,
2013
, p.
757980
.
4.
Blazejczyk-Okolewska
,
B.
, and
Czolczynski
,
K.
,
1998
, “
Some Aspects of the Dynamical Behaviour of the Impact Force Generator
,”
Chaos, Solitons Fractals
,
9
(
8
), pp.
1307
1320
.
5.
Chin
,
W.
,
Ott
,
E.
,
Nusse
,
H. E.
, and
Grebogi
,
C.
,
1994
, “
Grazing Bifurcations in Impact Oscillators
,”
Phys. Rev. E
,
50
(
6
), pp.
4427
4444
.
6.
Isomaki
,
H. M.
,
Von Boehm
,
J.
, and
Raty
,
R.
,
1985
, “
Devil's Attractors and Chaos of a Driven Impact Oscillator
,”
Phys. Lett. A
,
107
(
8
), pp.
343
346
.
7.
Nordmark
,
A. B.
,
1991
, “
Non-Periodic Motion Caused by Grazing Incidence in an Impact Oscillator
,”
J. Sound Vib.
,
145
(
2
), pp.
279
297
.
8.
Peterka
,
F.
, and
Vacik
,
J.
,
1992
, “
Transition to Chaotic Motion in Mechanical Systems With Impacts
,”
J. Sound Vib.
,
154
(
1
), pp.
95
115
.
9.
Shaw
,
S. W.
, and
Holmes
,
P. J.
,
1983
, “
A Periodically Forced Piecewise Linear Oscillator
,”
J. Sound Vib.
,
90
(
1
), pp.
129
155
.
10.
Serweta
,
W.
,
Okolewski
,
A.
,
Blazejczyk-Okolewska
,
B.
,
Czolczynski
,
K.
, and
Kapitaniak
,
T.
,
2015
, “
Mirror Hysteresis and Lyapunov Exponents of Impact Oscillator With Symmetrical Soft Stops
,”
Int. J. Mech. Sci.
,
101–102
, pp.
89
98
.
11.
Thompson
,
J. M. T.
, and
Ghaffari
,
R.
,
1982
, “
Chaos After Period-Doubling Bifurcations in the Resonance of an Impact Oscillator
,”
Phys. Lett. A
,
91
, pp.
296
299
.
12.
Andreaus
,
U.
,
Placidi
,
L.
, and
Rega
,
G.
,
2011
, “
Soft Impact Dynamics of a Cantilever Beam: Equivalent SDOF Model Versus Infinite-Dimensional System
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
10
), pp.
2444
2456
.
13.
Andreaus
,
U.
,
Chiaia
,
B.
, and
Placidi
,
L.
,
2013
, “
Soft-Impact Dynamics of Deformable Bodies
,”
Continuum Mech. Thermodyn.
,
25
(
1
), pp.
375
398
.
14.
Andreaus
,
U.
,
Placidi
,
L.
, and
Rega
,
G.
,
2013
, “
Microcantilever Dynamics in Tapping Mode Atomic Force Microscopy Via Higher Eigenmodes Analysis
,”
J. Appl. Phys.
,
113
(
22
), pp.
1
14
.
15.
Andreaus
,
U.
,
Baragatti
,
B.
, and
Placidi
,
L.
,
2016
, “
Experimental and Numerical Investigations of the Responses of a Cantilever Beam Possibly Contacting a Deformable and Dissipative Obstacle Under Harmonic Excitation
,”
Int. J. Nonlinear Mech.
,
80
, pp.
96
106
.
16.
de Souza
,
S. L. T.
,
Wiercigroch
,
M.
,
Caldas
,
I. L.
, and
Balthazar
,
J. M.
,
2008
, “
Suppressing Grazing Chaos in Impacting System by Structural Nonlinearity
,”
Chaos, Solitons Fractals
,
38
(
3
), pp.
864
869
.
17.
Emans
,
J.
,
Wiercigroch
,
M.
, and
Krivtsov
,
A. M.
,
2005
, “
Cumulative Effect of Structural Nonlinearities: Chaotic Dynamics of Cantilever Beam System With Impacts
,”
Chaos, Solitons Fractals
,
23
(
5
), pp.
1661
1670
.
18.
Ing
,
J.
,
Pavlovskaia
,
E.
,
Wiercigroch
,
M.
, and
Banerjee
,
S.
,
2008
, “
Experimental Study of Impact Oscillator With One-Sided Elastic Constraint
,”
Philos. Trans. R. Soc. A
,
366
(
1866
), pp.
679
704
.
19.
Blazejczyk-Okolewska
,
B.
,
Czolczynski
,
K.
, and
Kapitaniak
,
T.
,
2010
, “
Hard Versus Soft Impacts in Oscillatory Systems Modeling
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
5
), pp.
1358
1367
.
20.
Ho
,
J. H.
,
Nguyen
,
V. D.
, and
Woo
,
K. C.
,
2011
, “
Nonlinear Dynamics of a New Electro-Vibro-Impact System
,”
Nonlinear Dyn.
,
63
(
1
), pp.
35
49
.
21.
Kaharaman
,
A.
, and
Blankenship
,
G. W.
,
1997
, “
Experiments on Nonlinear Dynamic Behavior of an Oscillator With Clearance and Periodically Time-Varying Parameters
,”
ASME J. Appl. Mech.
,
64
(
1
), pp.
217
226
.
22.
Kaharaman
,
A.
, and
Singh
,
R.
,
1992
, “
Dynamics of an Oscillator With Both Clearance and Continuous Non-Linearities
,”
J. Sound Vib.
,
153
(
1
), pp.
180
185
.
23.
Kim
,
Y. B.
, and
Noah
,
S. T.
,
1990
, “
Stability and Bifurcation Analysis of Oscillators With Piecewise–Linear Characteristics: A General Approach
,”
ASME J. Appl. Mech.
,
58
(
2
), pp.
545
553
.
24.
Luo
,
G. W.
,
Zhu
,
X. F.
, and
Shi
,
Y. Q.
,
2015
, “
Dynamics of a Two-Degree-of Freedom Periodically-Forced System With a Rigid Stop: Diversity and Evolution of Periodic-Impact Motions
,”
J. Sound Vib.
,
334
, pp.
338
362
.
25.
Blazejczyk-Okolewska
,
B.
, and
Peterka
,
F.
,
1998
, “
An Investigation of the Dynamic System With Impacts
,”
Chaos, Solitons Fractals
,
9
(
8
), pp.
1321
1338
.
26.
Blazejczyk-Okolewska
,
B.
,
2000
, “
Study of the Impact Oscillator With Elastic Coupling of Masses
,”
Chaos, Solitons Fractals
,
11
(
15
), pp.
2487
2492
.
27.
Warminski
,
J.
,
Lenci
,
S.
,
Cartmell
,
M. P.
,
Rega
,
G.
, and
Wiercigroch
,
M.
,
2012
,
Nonlinear Dynamics Phenomena in Mechanics
(Solid Mechanics and Its Applications), Vol.
181
,
Springer-Verlag
,
Berlin
.
28.
Brzeski
,
P.
,
Kapitaniak
,
T.
, and
Perlikowski
,
P.
,
2015
, “
Experimental Verification of a Hybrid Dynamical Model of the Church Bell
,”
Int. J. Impact Eng.
,
80
, pp.
177
184
.
29.
Stefanski
,
A.
, and
Kapitaniak
,
T.
,
2003
, “
Estimation of the Dominant Lyapunov Exponent of Non-Smooth Systems on the Basis of Maps Synchronization
,”
Chaos, Solitons Fractals
,
15
(
2
), pp.
233
244
.
30.
Peterka
,
F.
,
1970
, “
An Investigation of the Motion of Impact Dampers: Theory of the Fundamental Impact Motion
,”
Strojnicky Cas.
,
21
, pp.
457
478
.
31.
Aidanpaa
,
J. O.
, and
Gupta
,
R. B.
,
1993
, “
Periodic and Chaotic Behaviour of a Threshold-Limited Two-Degree-of-Freedom System
,”
J. Sound Vib.
,
165
(
2
), pp.
305
327
.
32.
Czolczynski
,
K.
,
2004
, “
On the Existence of a Stable Periodic Solution of an Impacting Oscillator With Damping
,”
Chaos, Solitons Fractals
,
19
(
5
), pp.
1291
1311
.
33.
Czolczynski
,
K.
, and
Kapitaniak
,
T.
,
2004
, “
On the Existence of a Stable Periodic Solution of an Impacting Oscillator With Two Fenders
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
,
14
(
09
), pp.
3115
3134
.
34.
Czolczynski
,
K.
,
Blazejczyk-Okolewska
,
B.
, and
Okolewski
,
A.
,
2016
, “
Analytical and Numerical Investigations of Stable Periodic Solutions of the Impacting Oscillator With a Moving Base
,”
Int. J. Mech. Sci.
,
115–116
, pp.
325
338
.
35.
Pun
,
D.
,
Lau
,
S. L.
,
Law
,
S. S.
, and
Cao
,
D. Q.
,
1998
, “
Forced Vibration Analysis of a Multidegree Impact Vibrator
,”
J. Sound Vib.
,
213
(
3
), pp.
447
466
.
36.
Luo
,
G. W.
,
Lv
,
X. H.
, and
Shi
,
Y. Q.
,
2014
, “
Vibro-Impact Dynamics of a Two-Degree-of-Freedom Periodically-Forced System With a Clearance: Diversity and Parameter Matching of Periodic-Impact Motions
,”
Int. J. Nonlinear Mech.
,
65
, pp.
173
195
.
37.
Müller
,
P. C.
,
1995
, “
Calculation of Lyapunov Exponents for Dynamic Systems With Discontinuities
,”
Chaos, Solitons Fractals
,
5
(
9
), pp.
1671
1681
.
38.
Benettin
,
G.
,
Galgani
,
L.
,
Giorgilli
,
A.
, and
Strelcyn
,
J. M.
,
1980
, “
Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems; A Method for Computing All of Them—Part I: Theory
,”
Meccanica
15
(
1
), pp.
9
20
.
39.
Benettin
,
G.
,
Galgani
,
L.
,
Giorgilli
,
A.
, and
Strelcyn
,
J. M.
,
1980
, “
Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems; A Method for Computing All of Them—Part II: Numerical Application
,”
Meccanica
,
15
(
1
), pp.
21
30
.
40.
Jin
,
L.
,
Lu
,
Q. S.
, and
Twizell
,
E. H.
,
2006
, “
A Method for Calculating the Spectrum of Lyapunov Exponents by Local Maps in Non-Smooth Impact-Vibrating Systems
,”
J. Sound Vib.
,
298
(
4–5
), pp.
1019
1033
.
41.
de Souza
,
S. L. T.
, and
Caldas
,
I. L.
,
2004
, “
Calculation of Lyapunov Exponents in Systems With Impacts
,”
Chaos, Solitons Fractals
,
19
(
3
), pp.
569
579
.
42.
Galvanetto
,
U.
,
2000
, “
Numerical Computation of Lyapunov Exponents in Discontinuous Maps Implicitly Defined
,”
Comput. Phys. Commun.
,
131
(
1–2
), pp.
1
9
.
43.
Li
,
Q.
,
Chen
,
Y.
,
Wei
,
Y.
, and
Lu
,
Q.
,
2011
, “
The Analysis of the Spectrum of Lyapunov Exponents in a Two-Degree-of-Freedom Vibro-Impact System
,”
Int. J. Nonlinear Mech.
,
46
(
1
), pp.
197
203
.
44.
Li
,
Q. H.
, and
Tan
,
J. Y.
,
2011
, “
Lyapunov Exponent Calculation of a Two-Degree-of-Freedom Vibro-Impact System With Symmetrical Rigid Stops
,”
Chin. Phys. B
,
20
, pp.
1
9
.http://iopscience.iop.org/article/10.1088/1674-1056/20/4/040505
45.
Luo
,
G.
,
Ma
,
L.
, and
Lv
,
X.
,
2009
, “
Dynamic Analysis and Suppressing Chaotic Impacts of a Two-Degree-of-Freedom Oscillator With a Clearance
,”
Nonlinear Anal.: Real World Appl.
,
10
(
2
), pp.
756
778
.
46.
Yue
,
Y.
,
2011
, “
The Dynamics of a Symmetric Impact Oscillator Between Two Rigid Stops
,”
Nonlinear Anal.: Real World Appl.
,
12
(
1
), pp.
741
750
.
47.
Yue
,
Y.
, and
Xie
,
J.
,
2009
, “
Lyapunov Exponents and Coexistence of Attractors in Vibro-Impact Systems With Symmetric Two-Sided Rigid Constraints
,”
Phys. Lett. A
,
373
(
23–24
), pp.
2041
2046
.
48.
Andreaus
,
U.
,
Placidi
,
L.
, and
Rega
,
G.
,
2010
, “
Numerical Simulation of the Soft Contact Dynamics of an Impacting Bilinear Oscillator
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
9
), pp.
2603
2616
.
49.
Kobrinskii
,
A. E.
,
1969
,
Dynamics of Mechanisms With Elastic Connections and Impact Systems
,
Iliffe Books
,
London
.
50.
Elaydi
,
S.
,
2005
,
An Introduction to Difference Equations
,
Springer-Verlag
,
New York
.
51.
Peterka
,
F.
, and
Blazejczyk-Okolewska
,
B.
,
2005
, “
Some Aspects of the Dynamical Behavior of the Impact Damper
,”
J. Vib. Control
,
11
(
4
), pp.
459
479
.
52.
Balachandra Rao
,
S.
, and
Anuradha
,
H. R.
,
1996
,
Differential Equations With Applications and Programs
,
Universities Press
,
Hyderabad, India
.
53.
Serweta
,
W.
,
Okolewski
,
A.
,
Blazejczyk-Okolewska
,
B.
,
Czolczynski
,
K.
, and
Kapitaniak
,
T.
,
2014
, “
Lyapunov Exponents of Impact Oscillators With Hertz's and Newton's Contact Models
,”
Int. J. Mech. Sci.
,
89
, pp.
194
206
.
54.
Parker
,
T. S.
, and
Chua
,
L. O.
,
1989
,
Practical Numerical Algorithms for Chaotic Systems
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.