The finite-time synchronization for the high-dimensional chaotic system is studied. A method is derived from the finite-time stability theory and adaptive control technique. To show the wider applicability of our method, an illustration is given using four-dimensional (4D) hyperchaotic systems. Numerical simulations are also used to verify the effectiveness of the technique. Then, the synchronization is applied to secure communication through chaos masking. Simulation results show that the two high-dimensional chaotic systems can realize monotonous synchronization, and the information signal, which is masked, can be recovered undistortedly.
Issue Section:
Research Papers
Keywords:
Stability
References
1.
Ott
, E.
, Grebogi
, C.
, and Yorke
, J.
, 1990
, “Controlling Chaos
,” Phys. Rev. Lett.
, 64
(11
), pp. 1196
–1199
.2.
Chen
, D.
, Zhao
, W.
, Sprott
, J.
, and Ma
, X.
, 2013
, “Application of Takagi-Sugeno fuzzy Model to a Class of Chaotic Synchronization and Anti-Synchronization
,” Nonlinear Dyn.
, 73
(3
), pp. 1495
–1505
.3.
Chen
, D.
, Zhao
, W.
, Ma
, X.
, and Wang
, J.
, 2013
, “Control for a Class of 4D Chaotic Systems With Random-Varying Parameters and Noise Disturbance
,” J. Vib. Control
, 19
(7
), pp. 1080
–1086
.4.
Gan
, Q.
, Zhang
, H.
, and Dong
, J.
, 2013
, “Exponential Synchronization for Reaction-Diffusion Neural Networks With Mixed Time-Varying Delays Via Periodically Intermittent Control
,” Nonlinear Anal. Modell. Control
, 19
, pp. 1
–25
.5.
Yu
, X.
, and Liu
, G.
, 2014
, “Output Feedback Control of Nonlinear Systems With Uncertain ISS/iISS Supply Rates and Noises
,” Nonlinear Anal. Modell. Control
, 19
, pp. 286
–299
.6.
Wang
, H.
, Han
, Z.
, Xie
, Q.
, and Zhang
, W.
, 2009
, “Finite-Time Synchronization of Uncertain Unified Chaotic Systems Based on CLF
,” Nonlinear Anal. RWA
, 10
(5
), pp. 2842
–2849
.7.
Bhat
, S.
, and Bernstein
, D.
, 1997
, “Finite-Time Stability of Homogeneous Systems
,” ACC, Albuquerque, NM, pp. 2513
–2514
.8.
Haimo
, V. T.
, 1986
, “Finite Time Controllers
,” SIAM J. Control Optim.
, 24
(4
), pp. 760
–770
.9.
Sugawara
, T.
, Tachikawa
, M.
, Tsukamoto
, T.
, and Shimizu
, T.
, 1994
, “Observation of Synchronization in Laser Chaos
,” Phys. Rev. Lett.
, 72
(22
), pp. 3502
–3505
.10.
Artstein
, Z.
, 1983
, “Stabilization With Relaxed Controls
,” Nonlinear Anal. TMA
, 7
(11
), pp. 1163
–1173
.11.
Yu
, W.
, 2010
, “Finite-Time Stabilization of Three-Dimensional Chaotic Systems Based on CLF
,” Phys. Lett. A
, 374
(30
), pp. 3021
–3024
.12.
Liu
, Y.
, 2012
, “Circuit Implementation and Finite-Time Synchronization of the 4D Rabinovich Hyperchaotic System
,” Nonlinear Dyn.
, 67
(1
), pp. 89
–96
.13.
Rössler
, O. E.
, 1976
, “An Equation for Continuous Chaos
,” Phys. Lett. A
, 57
(5
), pp. 397
–398
.14.
Buscarino
, A.
, Fortuna
, L.
, and Frasca
, M.
, 2009
, “Experimental Robust Synchronization of Hyperchaotic Circuits
,” Physica D
, 238
(18
), pp. 1917
–1922
.15.
Yang
, X.
, and Cao
, J.
, 2010
, “Finite-Time Stochastic Synchronization of Complex Networks
,” Appl. Math. Modell.
, 34
(11
), pp. 3631
–3641
.16.
Yang
, X.
, Cao
, J.
, and Lu
, J.
, 2011
, “Synchronization of Delayed Complex Dynamical Networks With Impulsive and Stochastic Effects
,” Nonlinear Anal. RWA
, 12
(4
), pp. 2252
–2266
.17.
Shen
, J.
, and Cao
, J.
, 2011
, “Finite-Time Synchronization of Coupled Neural Networks Via Discontinuous Controllers
,” Cognit. Neurodyn.
, 5
(4
), pp. 373
–385
.18.
Chen
, D.
, Lin
, S.
, Chen
, H.
, and Ma
, X.
, 2012
, “Analysis and Control of a Hyperchaotic System With Only One Nonlinear Term
,” Nonlinear Dyn.
, 67
(3
), pp. 1745
–1752
.19.
Chen
, D.
, Zhang
, R.
, Ma
, X.
, and Liu
, S.
, 2012
, “Chaotic Synchronization and Anti-Synchronization for a Novel Class of Multiple Chaotic Systems Via a Sliding Mode Control Scheme
,” Nonlinear Dyn.
, 69
(1), pp. 35
–55
.20.
Guo
, R.
, 2012
, “Finite-Time Stabilization of a Class of Chaotic Systems Via Adaptive Control Method
,” Commun. Nonlinear Sci. Numer. Simul.
, 17
(1
), pp. 255
–262
.21.
Liu
, Y.
, Yang
, Q.
, and Pang
, G.
, 2010
, “A Hyperchaotic System From the Rabinovich System
,” J. Comput. Appl. Math.
, 234
(1
), pp. 101
–113
.22.
Pang
, S.
, and Liu
, Y.
, 2011
, “A New Hyperchaotic System From the Lü System and Its Control
,” J. Comput. Appl. Math.
, 235
(8
), pp. 2775
–2789
.Copyright © 2016 by ASME
You do not currently have access to this content.