The validity and accuracy of a high-fidelity mechanistic multibody model of a vertical piano action mechanism is examined experimentally and through simulation. An overview of the theoretical and computational framework of this previously presented model is given first. A dynamically realistic benchtop prototype mechanism was constructed and driven by a mechanical actuator pressing the key. For simulations, a parameterization based on geometric and dynamic component properties and configuration is used; initial conditions are established by a virtual regulation that mimics a piano technician's procedure. The motion of each component is obtained experimentally by high-speed imaging and automated tracking. Simulated response is shown to accurately represent that of the real action for two different (pressed) key inputs using a single fixed parameterization. Various specialized model features are separately evaluated. Proper simulated dynamic behavior supports the accuracy of the friction representation; this is especially so for softer key inputs which demand a more actively controlled playing technique. The accuracy of the contact model is confirmed by the proper timing and function of the mechanism, as the relationship between components is strongly dependent on the state of compression of the interface between them. The value of including three flexible components is weighed against their significant computational cost. Compared to a rigid fixed ground point target, hammer impact on a compliant string reduces impact force, contact duration, and postimpact hammer velocity to improve accuracy. Flexibility of the backcheck wire and hammer shank also strongly affects postimpact behavior of the mechanism. The sophisticated balance pivot model is seen to be valuable in creating a realistic key response, with compression of felt balance punching and lift-off of the key, very important for achieving the proper key–hammer relationship. Finally, two components unique to the vertical mechanism—the bridle strap and butt spring—are shown to be essential in controlling the hammer for detached key inputs, where the key is released before it has reached the front punching. Accurate postimpact response is important for proper simulation of repeated notes, as well as the “feel” of the action. In general, the results reported can be considered as a validation of the method for constructing and parameterizing a dynamically accurate multibody model of a specific prototype mechanism or system including compliant contacts and flexibility of some components, as well as ad hoc components to cover unusual dynamic behavior.

References

1.
Masoudi
,
R.
,
Birkett
,
S.
, and
McPhee
,
J.
,
2014
, “
A Mechanistic Multibody Model for Simulating the Dynamics of a Vertical Piano Action Mechanism
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(3), p.
031014
.10.1115/1.4026157
2.
Askenfelt
,
A.
, and
Jansson
,
E.
,
1990
, “
From Touch to String Vibrations. I: Timing in the Grand Piano Action
,”
J. Acoust. Soc. Am.
,
88
(1), pp.
52
63
.10.1121/1.399933
3.
Askenfelt
,
A.
, and
Jansson
,
E.
,
1991
, “
From Touch to String Vibrations. II: The Motion of the Key and Hammer
,”
J. Acoust. Soc. Am.
,
90
(5), pp.
2383
2393
.10.1121/1.402043
4.
Boutillon
,
X.
,
1988
, “
Model for Piano Hammers: Experimental Determination and Digital Simulation
,”
J. Acoust. Soc. Am.
,
83
(2), pp.
746
754
.10.1121/1.396117
5.
Gillespie
,
R. B.
,
1996
, “
Haptic Display of Systems With Changing Kinematic Constraints: The Virtual Piano Action
,” Ph.D. thesis, Stanford University, Stanford, CA.
6.
Gillespie
,
B.
,
1992
, “
Dynamical Modeling of the Grand Piano Action
,”
Proceedings of the International Computer Music Conference
, San Jose, CA, October 14–18, pp.
77
80
.
7.
Hirschkorn
,
M. C.
,
2004
, “
Dynamic Model of a Piano Action Mechanism
,” MS thesis, University of Waterloo, Waterloo, ON.
8.
Hirschkorn
,
M.
,
McPhee
,
J.
, and
Birkett
,
S.
,
2006
, “
Dynamic Modeling and Experimental Testing of a Piano Action Mechanism
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(1), pp.
47
55
.10.1115/1.1951782
9.
Izadbakhsh
,
A.
,
2006
, “
Dynamics and Control of a Piano Action Mechanism
,” MS thesis, University of Waterloo, Waterloo, ON.
10.
Izadbakhsh
,
A.
,
McPhee
,
J.
, and
Birkett
,
S.
,
2008
, “
Dynamic Modeling and Experimental Testing of a Piano Action Mechanism With a Flexible Hammer Shank
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(3), pp.
1
10
.10.1115/1.2908180
11.
Vyasarayani
,
C.
,
Birkett
,
S.
, and
McPhee
,
J.
,
2009
, “
Modelling the Dynamics of a Compliant Piano Action Mechanism Impacting an Elastic Stiff String
,”
J. Acoust. Soc. Am.
,
125
(6), pp.
4034
4042
.10.1121/1.3125343
12.
Birkett
,
S.
,
2013
, “
Experimental Investigation of the Piano Hammer-String Interaction
,”
J. Acoust. Soc. Am.
,
133
(4), pp.
2467
2478
.10.1121/1.4792357
13.
Goebl
,
W.
,
Bresin
,
R.
, and
Galembo
,
A.
,
2005
, “
Touch and Temporal Behavior of Grand Piano Actions
,”
J. Acoust. Soc. Am.
,
118
(2), pp.
1154
1165
.10.1121/1.1944648
14.
Masoudi
,
R.
,
2012
, “
Micromechanics of Fiber Networks Including Nonlinear Hysteresis and Its Application to Multibody Dynamic Modeling of Piano Mechanisms
,” Ph.D. thesis, University of Waterloo, Waterloo, ON, Canada.
15.
McPhee
,
J.
,
2005
, “
Unified Modeling Theories for the Dynamics of Multibody Systems
,”
Advances in Computational Multibody Systems
,
Springer Verlag
, The Netherlands, pp.
129
158
.
16.
Maplesoft,
2007
,
Maple 11 User Manual
,
Maplesoft
,
Waterloo, ON, Canada
.
You do not currently have access to this content.