Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-2 of 2
Keywords: discontinuous Galerkin
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Biomechanical Engineering
Publisher: ASME
Article Type: Research-Article
J Biomech Eng. March 2022, 144(3): 031002.
Paper No: BIO-21-1118
Published Online: October 11, 2021
... and mapping between the structured (to determine the transmural depth) and unstructured (electromechanical heart simulation) grids, we solve the equations directly on the same unstructured tetrahedral mesh. We propose a finite-element-based discontinuous Galerkin approach. Based on the accurate transmural...
Journal Articles
Journal:
Journal of Biomechanical Engineering
Publisher: ASME
Article Type: Research-Article
J Biomech Eng. January 2014, 136(1): 011009.
Paper No: BIO-13-1179
Published Online: December 4, 2013
... is possible. The boundary conditions were defined by a measured pulsatile pattern for the inputs, and were given by lumped parameter models based on experimental data for the outputs. The fluid was modeled by reduced Navier–Stokes equations. The equations were solved by the implicit discontinuous Galerkin (DG...