Abstract

The continuous softening behavior of the brain tissue, i.e., the softening in the primary loading path with an increase in deformation, is modeled in this work as a state of hyperelasticity up to the onset of failure. That is, the softening behavior is captured via a core hyperelastic model without the addition of damage variables and/or functions. Examples of the application of the model will be provided to extant datasets of uniaxial tension and simple shear deformations, demonstrating the capability of the model to capture the whole-range deformation of the brain tissue specimens, including their softening behavior. Quantitative and qualitative comparisons with other models within the brain biomechanics literature will also be presented, showing the clear advantages of the current approach. The application of the model is then extended to capturing the rate-dependent softening behavior of the tissue by allowing the parameters of the core hyperelastic model to evolve, i.e., vary, with the deformation rate. It is shown that the model captures the rate-dependent and softening behaviors of the specimens favorably and also predicts the behavior at other rates. These results offer a clear set of advantages in favor of the considered modeling approach here for capturing the quasi-static and rate-dependent mechanical properties of the brain tissue, including its softening behavior, over the existing models in the literature, which at best may purport to capture only a reduced set of the foregoing behaviors, and with ill-posed effects.

References

1.
Anssari-Benam
,
A.
,
2023
, “
Continuous Softening Up to the Onset of Failure: A Hyperelastic Modelling Approach With Intrinsic Softening for Isotropic Incompressible Soft Solids
,”
Mech. Res. Commun.
,
132
, p.
104183
.10.1016/j.mechrescom.2023.104183
2.
Ogden
,
R. W.
, and
Roxburgh
,
D. G.
,
1999
, “
A Pseudo-Elastic Model for the Mullins Effect in Filled Rubber
,”
Proc. R. Soc. Lond. A
,
455
(
1988
), pp.
2861
2877
.10.1098/rspa.1999.0431
3.
Dorfmann
,
A.
, and
Ogden
,
R. W.
,
2004
, “
A Constitutive Model for the Mullins Effect With Permanent Set in Particle-Reinforced Rubber
,”
Int. J. Solids Struct.
,
41
(
7
), pp.
1855
1878
.10.1016/j.ijsolstr.2003.11.014
4.
Anssari-Benam
,
A.
,
Akbari
,
R.
, and
Dargazany
,
R.
, “
Extending the Theory of Pseudo-Elasticity to Capture the Permanent Set and the Induced Anisotropy in the Mullins Effect
,”
Int. J. Non Linear Mech.
,
156
(
2023
), p.
104500
.10.1016/j.ijnonlinmec.2023.104500
5.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2020
, “
A Damage Model for Collagen Fibres With an Application to Collagenous Soft Tissues
,”
Proc. R. Soc. A
,
476
(
2236
), p.
20190821
.10.1098/rspa.2019.0821
6.
Simo
,
J. C.
,
1987
, “
On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects
,”
Comp. Methods Appl. Mech. Eng.
,
60
(
2
), pp.
153
173
.10.1016/0045-7825(87)90107-1
7.
Volokh
,
K. Y.
,
2007
, “
Hyperelasticity With Softening for Modeling Materials Failure
,”
J. Mech. Phys. Solids
,
55
(
10
), pp.
2237
2264
.10.1016/j.jmps.2007.02.012
8.
Volokh
,
K. Y.
,
2010
, “
On Modeling Failure of Rubber-Like Materials
,”
Mech. Res. Commun.
,
37
(
8
), pp.
684
689
.10.1016/j.mechrescom.2010.10.006
9.
Holzapfel
,
G. A.
, and
Fereidoonnezhad
,
B.
,
2017
, “
Modeling of Damage in Soft Biological Tissues
,”
Biomechanics of Living organs - Hyperelastic Constitutive Laws for Finite Element Modelling
,
Y.
Payan
and
J.
Ohayon
, eds.,
Academic Press
,
Cambridge
, UK, pp.
101
123
.
10.
Yeoh
,
O. H.
,
1990
, “
Characterization of Elastic Properties of Carbon Black Filled Rubber Vulcanizates, Rubber
,”
Chem. Technol.
,
63
(
5
), pp.
792
805
.10.5254/1.3538289
11.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity-on the Correlation of Theory and Experiment for the Incompressible Rubber-Like Solids
,”
Proc. R. Soc. Lond. A
,
326
, pp.
565
584
.10.1098/rspa.1972.0026
12.
Maher
,
E.
,
Creane
,
A.
,
Lally
,
C.
, and
Kelly
,
D. J.
,
2012
, “
An Anisotropic Inelastic Constitutive Model to Describe Stress Softening and Permanent Deformation in Arterial Tissue
,”
J. Mech. Behav. Biomed. Mater.
,
12
, pp.
9
19
.10.1016/j.jmbbm.2012.03.001
13.
Peña
,
E.
,
2014
, “
Computational Aspects of the Numerical Modelling of Softening, Damage and Permanent Set in Soft Biological Tissues
,”
Comput. Struct.
,
130
, pp.
57
72
.10.1016/j.compstruc.2013.10.002
14.
Ghasemi
,
M.
,
Nolan
,
D. R.
, and
Lally
,
C.
,
2018
, “
An Investigation Into the Role of Different Constituents in Damage Accumulation in Arterial Tissue and Constitutive Model Development
,”
Biomech. Model. Mechanobiol.
,
17
(
6
), pp.
1757
1769
.10.1007/s10237-018-1054-3
15.
Balzani
,
D.
,
Brinkhues
,
S.
, and
Holzapfel
,
G. A.
,
2012
, “
Constitutive Framework for the Modeling of Damage in Collagenous Soft Tissues With Application to Arterial Walls
,”
Comput. Methods Appl. Mech. Eng.
,
213–216
, pp.
139
151
.10.1016/j.cma.2011.11.015
16.
Balzani
,
D.
, and
Schmidt
,
T.
,
2015
, “
Comparative Analysis of Damage Functions for Soft Tissues: Properties at Damage Initialization
,”
Math. Mech. Solids
,
20
(
4
), pp.
480
492
.10.1177/1081286513504945
17.
Eghbali
,
R.
, and
Narooei
,
K.
, “
A Hyperelastic-Damage Model to Study the Anisotropic Mechanical Behaviour of Coral-Hydrogel Bio-Composite
,”
J. Mech. Behav. Biomed. Mater.
,
126
(
2022
), p.
105054
.10.1016/j.jmbbm.2021.105054
18.
Ateshian
,
G. A.
,
Kroupa
,
K. R.
,
Petersen
,
C. A.
,
Zimmerman
,
B. K.
,
Maas
,
S. A.
, and
Weiss
,
J. A.
,
2023
, “
Damage Mechanics of Biological Tissues in Relation to Viscoelasticity
,”
ASME J. Biomech. Eng.
,
145
, p.
041011
.10.1115/1.4056063
19.
Rajagopal
,
K. R.
,
Srinivasa
,
A. R.
, and
Wineman
,
A. S.
,
2007
, “
On the Shear and Bending of a Degrading Polymer Beam
,”
Int. J. Plast.
,
23
(
9
), pp.
1618
1636
.10.1016/j.ijplas.2007.02.007
20.
Soares
,
J. S.
,
Moore
,
J. E.
, Jr.
, and
Rajagopal
,
K. R.
,
2008
, “
Constitutive Framework for Biodegradable Polymers With Applications to Biodegradable Stents
,”
ASAIO J.
,
54
(
3
), pp.
295
301
.10.1097/MAT.0b013e31816ba55a
21.
Soares
,
J. S.
,
Rajagopal
,
K. R.
, and
Moore
,
J. E.
, Jr.
,
2010
, “
Deformation-Induced Hydrolysis of a Degradable Polymeric Cylindrical Annulus
,”
Biomech. Model. Mechanobiol.
,
9
(
2
), pp.
177
186
.10.1007/s10237-009-0168-z
22.
Weisbecker
,
H.
,
Pierce
,
D. M.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2012
, “
Layer-Specific Damage Experiments and Modeling of Human Thoracic and Abdominal Aortas With Non-Atherosclerotic Intimal Thickening
,”
J. Mech. Behav. Biomed. Mater.
,
12
, pp.
93
106
.10.1016/j.jmbbm.2012.03.012
23.
Chagnon
,
G.
,
Verron
,
E.
,
Gornet
,
L.
,
Marckmann
,
G.
, and
Charrier
,
P.
, “
On the Relevance of Continuum Damage Mechanics as Applied to the Mullins Effect in Elastomers
,”
J. Mech. Phys. Solids
,
52
(
7
), pp.
1627
1650
.10.1016/j.jmps.2003.12.006
24.
Anssari-Benam
,
A.
, “
Large Isotropic Elastic Deformations: On a Comprehensive Model to Correlate the Theory and Experiments for Incompressible Rubber-Like Materials
,”
J. Elast.
,
153
(
2
), pp.
219
244
.10.1007/s10659-022-09982-5
25.
Mihai
,
L. A.
,
Chin
,
L.
,
Janmey
,
P. A.
, and
Goriely
,
A.
,
2015
, “
A Comparison of Hyperelastic Constitutive Models Applicable to Brain and Fat Tissues
,”
J. R. Soc. Interface
,
12
(
110
), p.
20150486
.10.1098/rsif.2015.0486
26.
Mihai
,
L. A.
,
Budday
,
S.
,
Holzapfel
,
G. A.
,
Kuhl
,
E.
, and
Goriely
,
A.
,
2017
, “
A Family of Hyperelastic Models for Human Brain Tissue
,”
J. Mech. Phys. Solids
,
106
, pp.
60
79
.10.1016/j.jmps.2017.05.015
27.
Destrade
,
M.
,
Gilchrist
,
M. D.
,
Murphy
,
J. G.
,
Rashid
,
B.
, and
Saccomandi
,
G.
,
2015
, “
Extreme Softness of Brain Matter in Simple Shear
,”
Int. J. Non Linear Mech.
,
75
, pp.
54
58
.10.1016/j.ijnonlinmec.2015.02.014
28.
Budday
,
S.
,
Sarem
,
M.
,
Starck
,
L.
,
Sommer
,
G.
,
Pfefferle
,
J.
,
Phunchago
,
N.
,
Kuhl
,
E.
, et al.,
2020
, “
Towards Microstructure-Informed Material Models for Human Brain Tissue
,”
Acta Biomater.
,
104
, pp.
53
65
.10.1016/j.actbio.2019.12.030
29.
Kang
,
W.
,
Xu
,
P.
,
Yue
,
Y.
,
Wang
,
L.
, and
Fan
,
Y.
, “
Difference Analysis of Phenomenological Models With Two Variable Forms for Soft Tissue Quasi-Static Mechanical Characterization
,”
Comput. Biol. Med.
,
150
(
2022
), p.
106150
.10.1016/j.compbiomed.2022.106150
30.
He
,
G.
,
Xia
,
B.
,
Feng
,
Y.
,
Chen
,
Y.
,
Fan
,
L.
, and
Zhang
,
D.
, “
Modeling the Damage-Induced Softening Behavior of Brain White Matter Using a Coupled Hyperelasticty-Damage Model
,”
J. Mech. Behav. Biomed. Mater.
,
141
(
2023
), p.
105753
.10.1016/j.jmbbm.2023.105753
31.
Rashid
,
B.
,
Destrade
,
M.
, and
Gilchrist
,
M. D.
,
2012
, “
Mechanical Characterization of Brain Tissue in Compression at Dynamic Strain Rates
,”
J. Mech. Behav. Biomed. Mater.
,
10
, pp.
23
38
.10.1016/j.jmbbm.2012.01.022
32.
Rashid
,
B.
,
Destrade
,
M.
, and
Gilchrist
,
M. D.
,
2013
, “
Mechanical Characterization of Brain Tissue in Simple Shear at Dynamic Strain Rates
,”
J. Mech. Behav. Biomed. Mater.
,
28
, pp.
71
85
.10.1016/j.jmbbm.2013.07.017
33.
Rashid
,
B.
,
Destrade
,
M.
, and
Gilchrist
,
M. D.
,
2014
, “
Mechanical Characterization of Brain Tissue in Tension at Dynamic Strain Rates
,”
J. Mech. Behav. Biomed. Mater.
,
33
, pp.
43
54
.10.1016/j.jmbbm.2012.07.015
34.
Zhang
,
W.
,
Zhang
,
R.-R.
,
Wu
,
F.
,
Feng
,
L.-L.
,
Yu
,
S.-B.
, and
Wu
,
C.-W.
,
2016
, “
Differences in the Viscoelastic Features of White and Grey Matter in Tension
,”
J. Biomech.
,
49
(
16
), pp.
3990
3995
.10.1016/j.jbiomech.2016.10.032
35.
He
,
G.
, and
Fan
,
L.
,
2023
, “
A Transversely Isotropic Viscohyperelastic-Damage Model for the Brain Tissue With Strain Rate Sensitivity
,”
J. Biomech.
,
151
, p.
111554
.10.1016/j.jbiomech.2023.111554
36.
Franceschini
,
G.
,
Bigoni
,
D.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2006
, “
Brain Tissue Deforms Similarly to Filled Elastomers and Follows Consolidation Theory
,”
J. Mech. Phys. Solids
,
54
(
12
), pp.
2592
2620
.10.1016/j.jmps.2006.05.004
37.
Begonia
,
M. T.
,
Knapp
,
A. M.
,
Prabhu
,
R. K.
,
Liao
,
J.
, and
Williams
,
L. N.
,
2021
, “
Shear-Deformation Based Continuum-Damage Constitutive Modeling of Brain Tissue
,”
J. Biomech.
,
117
, p.
110260
.10.1016/j.jbiomech.2021.110260
38.
Anssari-Benam
,
A.
, and
Hossain
,
M.
,
2023
, “
A Pseudo-Hyperelastic Model Incorporating the Rate Effects for Isotropic Rubber-Like Materials
,”
J. Mech. Phys. Solids
,
179
, p.
105347
.10.1016/j.jmps.2023.105347
39.
Anssari-Benam
,
A.
, and
Hossain
,
M.
,
2023
, “
A Unified Pseudo-Elastic Model of Continuous and Discontinuous Softening in the Finite Deformation of Isotropic Soft Solids
,”
Int. J. Solids Struct.
,
290
, p.
112670
.10.1016/j.ijsolstr.2024.112670
40.
Alagappan
,
P.
,
Kannan
,
K.
, and
Rajagopal
,
K. R.
,
2016
, “
On a Possible Methodology for Identifying the Initiation of Damage of a Class of Polymeric Materials
,”
Proc. R. Soc. A
,
472
(
2192
), p.
20160231
.10.1098/rspa.2016.0231
41.
Ogden
,
R. W.
,
Saccomandi
,
G.
, and
Sgura
,
I.
,
2004
, “
Fitting Hyperelastic Models to Experimental Data
,”
Comput. Mech.
,
34
(
6
), pp.
484
502
.10.1007/s00466-004-0593-y
42.
Anssari-Benam
,
A.
,
Screen
,
H. R. C.
, and
Bucchi
,
A.
,
2019
, “
Insights Into the Micromechanics of Stress-Relaxation and Creep Behaviours in the Aortic Valve
,”
J. Mech. Behav. Biomed. Mater.
,
93
, pp.
230
245
.10.1016/j.jmbbm.2019.02.011
43.
Jin
,
X.
,
Zhu
,
F.
,
Mao
,
H.
,
Shen
,
M.
, and
Yang
,
K. H.
,
2013
, “
A Comprehensive Experimental Study on Material Properties of Human Brain Tissue
,”
J. Biomech.
,
46
(
16
), pp.
2795
2801
.10.1016/j.jbiomech.2013.09.001
44.
Anssari-Benam
,
A.
, and
Horgan
,
C. O.
,
2021
, “
On Modelling Simple Shear for Isotropic Incompressible Rubber-Like Materials
,”
J. Elast.
,
147
(
1–2
), pp.
83
111
.10.1007/s10659-021-09869-x
45.
Anssari-Benam
,
A.
,
Destrade
,
M.
, and
Saccomandi
,
G.
,
2022
, “
Modelling Brain Tissue Elasticity With the Ogden Model and an Alternative Family of Constitutive Models
,”
Philos. Trans. R. Soc. A
,
380
(
2234
), p.
20210325
.10.1098/rsta.2021.0325
46.
Anssari-Benam
,
A.
,
2023
, “
Comparative Modelling Results Between a Separable and a Non-Separable Form of Principal Stretches–Based Strain Energy Functions for a Variety of Isotropic Incompressible Soft Solids: Ogden Model Compared With a Parent Model
,”
Mech. Soft Mater.
,
5
, p.
2
.10.1007/s42558-023-00050-z
47.
Anssari-Benam
,
A.
,
Bader
,
D. L.
, and
Screen
,
H. R. C.
,
2011
, “
A Combined Experimental and Modelling Approach to Aortic Valve Viscoelasticity in Tensile Deformation
,”
J. Mater. Sci.: Mater. Med.
,
22
(
2
), pp.
253
262
.10.1007/s10856-010-4210-6
48.
Anssari-Benam
,
A.
,
Bucchi
,
A.
,
Screen
,
H. R. C.
, and
Evans
,
S. L.
,
2017
, “
A Transverse Isotropic Viscoelastic Constitutive Model for Aortic Valve Tissue
,”
R. Soc. Open Sci.
,
4
(
1
), p.
160585
.10.1098/rsos.160585
49.
Anssari-Benam
,
A.
,
Tseng
,
Y.-T.
,
Holzapfel
,
G. A.
, and
Bucchi
,
A.
,
2019
, “
Rate-Dependency of the Mechanical Behaviour of Semilunar Heart Valves Under Biaxial Deformation
,”
Acta Biomater.
,
88
, pp.
120
130
.10.1016/j.actbio.2019.02.008
50.
Anssari-Benam
,
A.
,
Tseng
,
Y.-T.
,
Holzapfel
,
G. A.
, and
Bucchi
,
A.
,
2020
, “
Rate-Dependent Mechanical Behaviour of Semilunar Valves Under Biaxial Deformation: From Quasi-Static to Physiological Loading Rates
,”
J. Mech. Behav. Biomed. Mater.
,
104
, p.
103645
.10.1016/j.jmbbm.2020.103645
51.
Durcan
,
C.
,
Hossain
,
M.
,
Chagnon
,
G.
,
Perić
,
D.
,
Karam
,
G.
,
Bsiesy
,
L.
, and
Girard
,
E.
,
2022
, “
Experimental Investigations of the Human Oesophagus: Anisotropic Properties of the Embalmed Mucosa–Submucosa Layer Under Large Deformation
,”
Biomech. Model. Mechanobiol.
,
21
(
6
), pp.
1685
1702
.10.1007/s10237-022-01613-1
52.
Limbert
,
G.
, and
Middleton
,
J.
,
2004
, “
A Transversely Isotropic Viscohyperelastic Material: Application to the Modeling of Biological Soft Connective Tissues
,”
Int. J. Solids Struct.
,
41
(
15
), pp.
4237
4260
.10.1016/j.ijsolstr.2004.02.057
53.
De Vita
,
R.
, and
Slaughter
,
W. S.
,
2006
, “
A Structural Constitutive Model for the Strain Rate-Dependent Behavior of Anterior Cruciate Ligaments
,”
Int. J. Solids Struct
,
43
(
6
), pp.
1561
1570
.10.1016/j.ijsolstr.2005.04.022
54.
Amin
,
A.
,
Lion
,
A.
,
Sekita
,
S.
, and
Okui
,
Y.
,
2006
, “
Nonlinear Dependence of Viscosity in Modeling the Rate-Dependent Response of Natural and High Damping Rubbers in Compression and Shear: Experimental Identification and Numerical Verification
,”
Int. J. Plast.
,
22
(
9
), pp.
1610
1657
.10.1016/j.ijplas.2005.09.005
55.
Kumar
,
A.
, and
Lopez-Pamies
,
O.
,
2016
, “
On the Two-Potential Constitutive Modeling of Rubber Viscoelastic Materials
,”
C. R. Mec.
,
344
(
2
), pp.
102
112
.10.1016/j.crme.2015.11.004
56.
Anssari-Benam
,
A.
,
2021
, “
On a New Class of non-Gaussian Molecular-Based Constitutive Models With Limiting Chain Extensibility for Incompressible Rubber-Like Materials
,”
Math. Mech. Solids
,
26
(
11
), pp.
1660
1674
.10.1177/10812865211001094
57.
Eskandari
,
F.
,
Shafieian
,
M.
,
Aghdam
,
M. M.
, and
Laksari
,
K.
,
2021
, “
Tension Strain-Softening and Compression Strain-Stiffening Behavior of Brain White Matter
,”
Biomed. Eng.
,
49
(
1
), pp.
276
286
.10.1007/s10439-020-02541-w
58.
Linka
,
K.
, and
Kuhl
,
E.
,
2023
, “
A New Family of Constitutive Artificial Neural Networks Towards Automated Model Discovery
,”
Comput. Methods Appl. Mech. Eng
,
403
(
Part A
), p.
115731
.10.1016/j.cma.2022.115731
59.
Linka
,
K.
,
St. Pierre
,
S. R.
, and
Kuhl
,
E.
,
2023
, “
Automated Model Discovery for Human Brain Using Constitutive Artificial Neural Networks
,”
Acta Biomater.
,
160
, pp.
134
151
.10.1016/j.actbio.2023.01.055
60.
St. Pierre
,
S. R.
,
Linka
,
K.
, and
Kuhl
,
E.
,
2023
, “
Principal-Stretch-Based Constitutive Neural Networks Autonomously Discover a Subclass of Ogden Models for Human Brain Tissue
,”
Brain Multiphys.
,
4
(
2023
), p.
100066
.10.1016/j.brain.2023.100066
61.
Horgan
,
C. O.
,
Ogden
,
R. W.
, and
Saccomandi
,
G.
,
2004
, “
A Theory of Stress Softening of Elastomers Based on Finite Chain Extensibility
,”
Proc. R. Soc. Lond. A
,
460
(
2046
), pp.
1737
1754
.10.1098/rspa.2003.1248
62.
Puglisi
,
G.
, and
Saccomandi
,
G.
,
2015
, “
The Gent Model for Rubber-Like Materials: An Appraisal for an Ingenious and Simple Idea
,”
Int. J. Non Linear Mech.
,
68
, pp.
17
24
.10.1016/j.ijnonlinmec.2014.05.007
63.
Bucchi
,
A.
,
Tommasi
,
D. D.
,
Puglisi
,
G.
, and
Saccomandi
,
G.
,
2023
, “
Damage as a Material Phase Transition
,”
J. Elast.
,
154
(
1–4
), pp.
325
344
.10.1007/s10659-023-10014-z
64.
Bilston
,
L. E.
,
Liu
,
Z.
, and
Phan-Thien
,
N.
,
2001
, “
Large Strain Behaviour of Brain Tissue in Shear: Some Experimental Data and Differential Constitutive Model
,”
Biorheology
,
38
(
4
), pp.
335
345
.https://pubmed.ncbi.nlm.nih.gov/11673648/
You do not currently have access to this content.