Abstract

State-of-the-art participant-specific finite element models require advanced medical imaging to quantify bone geometry and density distribution; access to and cost of imaging is prohibitive to the use of this approach. Statistical appearance models may enable estimation of participants' geometry and density in the absence of medical imaging. The purpose of this study was to: (1) quantify errors associated with predicting tibia-fibula geometry and density distribution from skin-mounted landmarks using a statistical appearance model and (2) quantify how those errors propagate to finite element-calculated bone strain. Participant-informed models of the tibia and fibula were generated for thirty participants from height and sex and from twelve skin-mounted landmarks using a statistical appearance model. Participant-specific running loads, calculated using gait data and a musculoskeletal model, were applied to participant-informed and CT-based models to predict bone strain using the finite element method. Participant-informed meshes illustrated median geometry and density distribution errors of 4.39–5.17 mm and 0.116–0.142 g/cm3, respectively, resulting in large errors in strain distribution (median RMSE = 476–492 με), peak strain (limits of agreement =±27–34%), and strained volume (limits of agreement =±104–202%). These findings indicate that neither skin-mounted landmark nor height and sex-based predictions could adequately approximate CT-derived participant-specific geometry, density distribution, or finite element-predicted bone strain and therefore should not be used for analyses comparing between groups or individuals.

References

1.
Burr
,
D.
,
Milgrom
,
C.
,
Boyd
,
R.
,
Higgins
,
W.
,
Robin
,
G.
, and
Radin
,
E.
,
1990
, “
Experimental Stress Fractures of the Tibia. Biological and Mechanical Aetiology in Rabbits
,”
J. Bone Jt. Surg. Br
,
72-B
(
3
), pp.
370
375
.10.1302/0301-620X.72B3.2341429
2.
Edwards
,
W. B.
,
2018
, “
Modeling Overuse Injuries in Sport as a Mechanical Fatigue Phenomenon
,”
Exerc. Sport Sci. Rev.
,
46
(
4
), pp.
224
231
.10.1249/JES.0000000000000163
3.
Rizzone
,
K.
,
Ackerman
,
K. E.
,
Roos
,
K.
,
Dompier
,
T. P.
, and
Kerr
,
Z.
,
2017
, “
The Epidemiology of Stress Fractures in Collegiate Student-Athletes, 2004-2005 Through 2013-2014 Academic Years
,”
J. Athl. Train.
,
52
(
10
), pp.
966
975
.10.4085/1062-6050-52.8.01
4.
Carter
,
D. R.
,
Caler
,
W. E.
,
Spengler
,
D. M.
, and
Frankel
,
V. H.
,
1981
, “
Fatigue Behavior of Adult Cortical Bone: The Influence of Mean Strain and Strain Range
,”
Acta Orthop. Scand.
,
52
(
5
), pp.
481
490
.10.3109/17453678108992136
5.
Pattin
,
C. A.
,
Caler
,
W. E.
, and
Carter
,
D. R.
,
1996
, “
Cyclic Mechanical Property Degradation During Fatigue Loading of Cortical Bone
,”
J. Biomech.
,
29
(
1
), pp.
69
79
.10.1016/0021-9290(94)00156-1
6.
Hoenig
,
T.
,
Ackerman
,
K. E.
,
Beck
,
B. R.
,
Bouxsein
,
M. L.
,
Burr
,
D. B.
,
Hollander
,
K.
,
Popp
,
K. L.
,
Rolvien
,
T.
,
Tenforde
,
A. S.
, and
Warden
,
S. J.
,
2022
, “
Bone Stress Injuries
,”
Nat. Rev. Dis. Prim.
,
8
(
1
), p.
26
.10.1038/s41572-022-00352-y
7.
Ekenman
,
I.
,
Halvorsen
,
K.
,
Westblad
,
P.
,
Fellãnder-Tsai
,
L.
, and
Rolf
,
C.
,
1998
, “
Local Bone Deformation at Two Predominant Sites for Stress Fractures of the Tibia: An In Vivo Study
,”
Foot Ankle Int.
,
19
(
7
), pp.
479
484
.10.1177/107110079801900711
8.
Milgrom
,
C.
,
Finestone
,
A.
,
Sharkey
,
N.
,
Hamel
,
A.
,
Mandes
,
V.
,
Burr
,
D.
,
Arndt
,
A.
, and
Ekenman
,
I.
,
2002
, “
Metatarsal Strains Are Sufficient to Cause Fatigue Fracture During Cyclic Overloading
,”
Foot Ankle Int.
,
23
(
3
), pp.
230
235
.10.1177/107110070202300307
9.
Haider
,
I. T.
,
Baggaley
,
M.
, and
Brent Edwards
,
W.
,
2020
, “
Subject-Specific Finite Element Models of the Tibia With Realistic Boundary Conditions Predict Bending Deformations Consistent With In Vivo Measurement
,”
ASME J. Biomech. Eng.
,
142
(
2
), p. 021010.10.1115/1.4044034
10.
Bruce
,
O. L.
,
Baggaley
,
M.
,
Khassetarash
,
A.
,
Haider
,
I. T.
, and
Edwards
,
W. B.
,
2022
, “
Tibial-Fibular Geometry and Density Variations Associated With Elevated Bone Strain and Sex Disparities in Young Active Adults
,”
Bone
,
161
, p.
116443
.10.1016/j.bone.2022.116443
11.
Xu
,
C.
,
Reifman
,
J.
,
Baggaley
,
M.
,
Edwards
,
W. B.
, and
Unnikrishnan
,
G.
,
2020
, “
Individual Differences in Women During Walking Affect Tibial Response to Load Carriage: The Importance of Individualized Musculoskeletal Finite-Element Models
,”
IEEE Trans. Biomed. Eng.
,
67
(
2
), pp.
545
555
.10.1109/TBME.2019.2917415
12.
Cootes
,
T. F.
, and
Taylor
,
C. J.
,
2004
, “
Statistical Models of Appearance for Computer Vision
,” Technical Paper, University of Manchester, Manchester, UK.https://personalpages.manchester.ac.uk/staff/timothy.f.cootes/Models/app_models.pdf
13.
Bruce
,
O. L.
,
Baggaley
,
M.
,
Welte
,
L.
,
Rainbow
,
M. J.
, and
Edwards
,
W. B.
,
2022
, “
A Statistical Shape Model of the Tibia-Fibula Complex: Sexual Dimorphism and Effects of Age on Reconstruction Accuracy From Anatomical Landmarks
,”
Comput. Methods Biomech. Biomed. Eng.
, 25(8), pp.
875
886
.10.1080/10255842.2021.1985111
14.
Keast
,
M.
,
Bonacci
,
J.
, and
Fox
,
A.
,
2023
, “
Geometric Variation of the Human Tibia-Fibula: A Public Dataset of Tibia-Fibula Surface Meshes and Statistical Shape Model
,”
PeerJ
,
11
, p.
e14708
.10.7717/peerj.14708
15.
Nolte
,
D.
,
Ko
,
S.-T.
,
Bull
,
A. M. J.
, and
Kedgley
,
A. E.
,
2020
, “
Reconstruction of the Lower Limb Bones From Digitised Anatomical Landmarks Using Statistical Shape Modelling
,”
Gait Posture
,
77
, pp.
269
275
.10.1016/j.gaitpost.2020.02.010
16.
Zhang
,
J.
,
Fernandez
,
J.
,
Hislop-Jambrich
,
J.
, and
Besier
,
T. F.
,
2016
, “
Lower Limb Estimation From Sparse Landmarks Using an Articulated Shape Model
,”
J. Biomech.
,
49
(
16
), pp.
3875
3881
.10.1016/j.jbiomech.2016.10.021
17.
Myronenko
,
A.
, and
Song
,
X.
,
2010
, “
Point Set Registration: Coherent Point Drifts
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
32
(
12
), pp.
2262
2275
.10.1109/TPAMI.2010.46
18.
Dalstra
,
M.
,
Huiskes
,
R.
,
Odgaard
,
A.
, and
van Erning
,
L.
,
1993
, “
Mechanical and Textural Properties of Pelvic Trabecular Bone
,”
J. Biomech.
,
26
(
4–5
), pp.
523
535
.10.1016/0021-9290(93)90014-6
19.
Rho
,
J.-Y.
,
1996
, “
An Ultrasonic Method for Measuring the Elastic Properties of Human Tibial Cortical and Cancellous Bone
,”
Ultrasounds
,
34
(
8
), pp.
777
783
.10.1016/S0041-624X(96)00078-9
20.
Khassetarash
,
A.
,
Haider
,
I.
,
Baggaley
,
M.
, and
Edwards
,
W. B.
,
2023
, “
Tibial Strains During Prolonged Downhill Running: A Finite Element Analysis
,”
ASME J. Biomech. Eng.
,
145
(
4
), p. 041007.10.1115/1.4055756
21.
Marchetti
,
D. C.
,
Moatshe
,
G.
,
Phelps
,
B. M.
,
Dahl
,
K. D.
,
Ferrari
,
M. B.
,
Chahla
,
J.
,
Turnbull
,
T. L.
, and
LaPrade
,
R. F.
,
2017
, “
The Proximal Tibiofibular Joint: A Biomechanical Analysis of the Anterior and Posterior Ligamentous Complexes
,”
Am. J. Sports Med.
,
45
(
8
), pp.
1888
1892
.10.1177/0363546517697288
22.
Vaughan
,
C. L.
,
Davis
,
B. L.
, and
O'Conner
,
J. C.
,
1999
, Dynamics of Human Gait, Kiboho Publishers, South Africa.
23.
Arnold
,
E. M.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Delp
,
S. L.
,
2010
, “
A Model of the Lower Limb for Analysis of Human Movement
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
269
279
.10.1007/s10439-009-9852-5
24.
Grassi
,
L.
,
Fleps
,
I.
,
Sahlstedt
,
H.
,
Väänänen
,
S. P.
,
Ferguson
,
S. J.
,
Isaksson
,
H.
, and
Helgason
,
B.
,
2021
, “
Validation of 3D Finite Element Models From Simulated DXA Images for Biofidelic Simulations of Sideways Fall Impact to the Hip
,”
Bone
,
142
, p.
115678
.10.1016/j.bone.2020.115678
25.
Grassi
,
L.
,
Väänänen
,
S. P.
,
Ristinmaa
,
M.
,
Jurvelin
,
J. S.
, and
Isaksson
,
H.
,
2017
, “
Prediction of Femoral Strength Using 3D Finite Element Models Reconstructed From DXA Images: Validation Against Experiments
,”
Biomech. Model. Mechanobiol.
,
16
(
3
), pp.
989
1000
.10.1007/s10237-016-0866-2
26.
Väänänen
,
S. P.
,
Grassi
,
L.
,
Flivik
,
G.
,
Jurvelin
,
J. S.
, and
Isaksson
,
H.
,
2015
, “
Generation of 3D Shape, Density, Cortical Thickness and Finite Element Mesh of Proximal Femur From a DXA Image
,”
Med. Image Anal.
,
24
(
1
), pp.
125
134
.10.1016/j.media.2015.06.001
27.
Audenaert
,
E. A.
,
Pattyn
,
C.
,
Steenackers
,
G.
,
De Roeck
,
J.
,
Vandermeulen
,
D.
, and
Claes
,
P.
,
2019
, “
Statistical Shape Modeling of Skeletal Anatomy for Sex Discrimination: Their Training Size, Sexual Dimorphism, and Asymmetry
,”
Front. Bioeng. Biotechnol.
,
7
, p.
302
.10.3389/fbioe.2019.00302
28.
Mei
,
L.
,
Figl
,
M.
,
Rueckert
,
D.
,
Darzi
,
A.
, and
Edwards
,
P.
,
2008
, “
Sample Sufficiency and Number of Modes to Retain in Statistical Shape Modelling
,”
Lecture Notes in Computer Science
,
Metaxas
,
D.
,
Axel
,
L.
,
Fichtinger
,
G.
,
Szekely
,
G.
, eds.,
Springer
,
Berlin
, pp.
425
433
.
You do not currently have access to this content.