Abstract

Development of respiratory tissue constructs is challenging due to the complex structure of native respiratory tissue and the unique biomechanical conditions induced by breathing. While studies have shown that the inclusion of biomechanical stimulus mimicking physiological conditions greatly benefits the development of engineered tissues, to our knowledge no studies investigating the influence of biomechanical stimulus on the development of respiratory tissue models produced through three-dimensional (3D) bioprinting have been reported. This paper presents a study on the utilization of a novel breath-mimicking ventilated incubator to impart biomechanical stimulus during the culture of 3D respiratory bioprinted constructs. Constructs were bioprinted using an alginate/collagen hydrogel containing human primary pulmonary fibroblasts with further seeding of human primary bronchial epithelial cells. Biomechanical stimulus was then applied via a novel ventilated incubator capable of mimicking the pressure and airflow conditions of multiple breathing conditions: standard incubation, shallow breathing, normal breathing, and heavy breathing, over a two-week time period. At time points between 1 and 14 days, constructs were characterized in terms of mechanical properties, cell proliferation, and morphology. The results illustrated that incubation conditions mimicking normal and heavy breathing led to greater and more continuous cell proliferation and further indicated a more physiologically relevant respiratory tissue model.

References

1.
Zimmerling
,
A.
,
Zhou
,
Y.
, and
Chen
,
X.
,
2021
, “
Bioprinted Constructs for Respiratory Tissue Engineering
,”
Bioprinting
,
24
, p.
e00177
.10.1016/j.bprint.2021.e00177
2.
O'Leary
,
C.
,
Gilbert
,
J.
,
O'Dea
,
S.
,
O'Brien
,
F.
, and
Cryan
,
S.
,
2015
, “
Respiratory Tissue Engineering: Current Status and Opportunities for the Future
,”
Tissue Eng., Part B
,
21
(
4
), pp.
323
344
.10.1089/ten.teb.2014.0525
3.
Walles
,
T.
,
2011
, “
Tracheobronchial Bio-Engineering: Biotechnology Fulfilling Unmet Medical Needs
,”
Adv. Drug Delivery Rev.
,
63
(
4–5
), pp.
367
374
.10.1016/j.addr.2011.01.011
4.
Chen
,
D.
,
2018
,
Extrusion Bioprinting of Scaffolds for Tissue Engineering Applications
,
Springer
,
Cham, Switzerland
.
5.
Pai
,
S.
,
Muruganandah
,
V.
, and
Kupz
,
A.
,
2020
, “
What Lies Beneath the Airway Mucosal Barrier? Throwing the Spotlight on Antigen-Presenting Cell Function in the Lower Respiratory Tract
,”
Clin. Transl. Immunol.
,
9
(
7
), pp.
1
13
.10.1002/cti2.1158
6.
Tsuchiya
,
T.
,
Doi
,
R.
,
Obata
,
T.
,
Hatachi
,
G.
, and
Nagayasu
,
T.
,
2020
, “
Lung Microvascular Niche, Repair, and Engineering
,”
Front. Bioeng. Biotechnol.
,
8
, pp.
1
19
.10.3389/fbioe.2020.00105
7.
Zimmerling
,
A.
, and
Chen
,
X. B.
,
2020
, “
Bioprinting for Combating Infectious Diseases
,”
Bioprinting
,
20
, p.
e00104
.10.1016/j.bprint.2020.e00104
8.
Sadeghianmaryan
,
A.
,
Naghieh
,
S.
,
Sardroud
,
H.
,
Yazdanpanah
,
Z.
,
Soltani
,
Y.
,
Sernagli
,
J.
, and
Chen
,
X. B.
,
2020
, “
Extrusion-Based Printing of Chitosan Scaffolds and Their In Vitro Characterization for Cartilage Tissue Engineering
,”
Int. J. Biol. Macromol.
,
164
(
1
), pp.
3179
3192
.10.1016/j.ijbiomac.2020.08.180
9.
Ning
,
L.
,
Zhu
,
N.
,
Mohabatpour
,
F.
,
Sarker
,
M.
,
Schreyer
,
D.
, and
Chen
,
X. B.
,
2019
, “
Bioprinting Schwann Cell-Laden Scaffolds From Low-Viscosity Hydrogel Compositions
,”
J. Mater. Chem. B
,
7
(
29
), pp.
4538
4551
.10.1039/C9TB00669A
10.
Ozbolat
,
I.
, and
Gudapati
,
H.
,
2016
, “
A Review on Design for Bioprinting
,”
Bioprinting
,
3–4
, pp.
1
14
.10.1016/j.bprint.2016.11.001
11.
Chen
,
X. B.
,
Anvari-Yazdi
,
A. F.
,
Duan
,
X.
,
Zimmerling
,
A.
,
Gharraei
,
R.
,
Sharma
,
N. K.
,
Sweilem
,
S.
, and
Ning
,
L.
,
2023
, “
Biomaterials/Bioinks and Extrusion Bioprinting
,”
Bioact. Mater.
,
28
, pp.
511
536
.10.1016/j.bioactmat.2023.06.006
12.
Yazdanpanah
,
Z.
,
Sharma
,
N.
,
Zimmerling
,
A.
,
Cooper
,
S.
,
Johnston
,
J.
, and
Chen
,
X. B.
,
2023
, “
Investigation Into Relationships Between Design Parameters and Mechanical Properties of 3D Printed PCL/nHAp Bone Scaffolds
,”
PLoS One
,
18
(
7
), p.
e0288531
.10.1371/journal.pone.0288531
13.
Ketabat
,
F.
,
Maris
,
T.
,
Duan
,
X.
,
Yazdanpanah
,
Z.
,
Kelly
,
M.
,
Badea
,
I.
, and
Chen
,
X. B.
,
2023
, “
Optimization of 3D Printing and In Vitro Characterization of Alginate/Gelatin Lattice and Angular Scaffolds for Potential Cardiac Tissue Engineering
,”
Front. Bioeng. Biotechnol.
,
11
, p.
1161804
.10.3389/fbioe.2023.1161804
14.
Mohabatpour
,
F.
,
Duan
,
X.
,
Yazdanpanah
,
Z.
,
Tabil
,
X.
,
Lobanova
,
L.
,
Zhu
,
N.
,
Papagerakis
,
S.
,
Chen
,
X. B.
, and
Papagerakis
,
P.
,
2023
, “
Bioprinting of Alginate-Carboxymethyl Chitosan Scaffolds for Enamel Tissue Engineering In Vitro
,”
Biofabrication
,
15
(
1
), p.
015022
.10.1088/1758-5090/acab35
15.
Berg
,
J.
,
Hiller
,
T.
,
Kissner
,
M.
,
Qazi
,
T.
,
Duda
,
G.
,
Hocke
,
A.
,
Hippenstiel
,
S.
,
Elomaa
,
L.
,
Weinhart
,
M.
,
Fahrenson
,
C.
, and
Kurreck
,
J.
,
2018
, “
Optimization of Cell-Laden Bioinks for 3D Bioprinting and Efficient Infection With Influenza A
,”
Sci. Rep.
,
8
(
1
), pp.
1
13
.10.1038/s41598-018-31880-x
16.
Berg
,
J.
,
Weber
,
Z.
,
Fechler-Bitteti
,
M.
,
Hocke
,
A.
,
Hippenstiel
,
S.
,
Elomaa
,
L.
,
Weinhart
,
M.
, and
Kurreck
,
J.
,
2021
, “
Bioprinted Multi-Cell Type Lung Model for the Study of Viral Inhibitors
,”
Viruses
,
13
(
8
), p.
1590
.10.3390/v13081590
17.
Guenat
,
O.
, and
Berthiaume
,
F.
,
2018
, “
Incorporating Mechanical Strain in Organs-on-a-Chip: Lung and Skin
,”
Biomicrofluidics
,
12
(
4
), p.
042207
.10.1063/1.5024895
18.
Jung
,
O.
,
Tung
,
Y.
,
Sim
,
E.
,
Chen
,
Y.
,
Lee
,
E.
,
Ferrer
,
M.
, and
Song
,
M.
,
2022
, “
Development of Human-Derived, Three-Dimensional Respiratory Epithelial Tissue Constructs With Perfusable Microvasculature on a High-Throughput Microfluidics Screening Platform
,”
Biofabrication
,
14
(
2
), p.
025012
.10.1088/1758-5090/ac32a5
19.
Huh
,
D.
,
Leslie
,
D. C.
,
Matthews
,
B. D.
,
Fraser
,
J. P.
,
Jurek
,
S.
,
Hamilton
,
G. A.
,
Thorneloe
,
K. S.
,
McAlexander
,
M. A.
, and
Ingber
,
D. E.
,
2012
, “
A Human Disease Model of Drug Toxicity-Induced Pulmonary Edema in a Lung-on-a-Chip Microdevice
,”
Sci. Transl. Med.
,
4
(
159
), p. 159ra147.10.1126/scitranslmed.3004249
20.
Huh
,
D.
,
Matthews
,
B.
,
Mammoto
,
A.
,
Montoya-Zavala
,
M. M.
,
Yuan Hsin
,
H.
, and
Ingber
,
D.
,
2010
, “
Reconstituting Organ-Level Lung Functions on a Chip
,”
Science
,
328
(
5986
), pp.
1662
1668
.10.1126/science.1188302
21.
Sardroud
,
H.
,
Chen
,
X. B.
, and
Eames
,
F.
,
2023
, “
Reinforcement of Hydrogels With a 3D-Printed Structure Enhances Cell Numbers and Cartilage ECM Production Under Compression
,”
J. Funct. Biomater.
,
14
(
6
), p.
313
.10.3390/jfb14060313
22.
Sardroud
,
H.
,
Chen
,
X. B.
, and
Eames
,
F.
,
2023
, “
Applied Compressive Strain Governs Hyaline-Like Cartilage Versus Fibrocartilage-Like ECM Produced Within Hydrogel Constructs
,”
Int. J. Mol. Sci.
,
24
(
8
), p.
7410
.10.3390/ijms24087410
23.
Shrestha
,
J.
,
Razavi Bazaz
,
S.
,
Aboulkheyr Es
,
H.
,
Yaghobian Azari
,
D.
,
Thierry
,
B.
,
Ebrahimi Warkiani
,
M.
, and
Ghadiri
,
M.
,
2020
, “
Lung-on-a-Chip: The Future of Respiratory Disease Models and Pharmacological Studies
,”
Crit. Rev. Biotechnol.
,
40
(
2
), pp.
213
230
.10.1080/07388551.2019.1710458
24.
Castro
,
N.
,
Ribeiro
,
S.
,
Fernandes
,
M.
,
Ribeiro
,
C.
,
Cardoso
,
V.
,
Correia
,
V.
,
Minguez
,
R.
, and
Lanceros-Mendez
,
S.
,
2020
, “
Physically Active Bioreactors for Tissue Engineering Applications
,”
Adv. Biosyst.
,
4
(
10
).10.1002/adbi.202000125
25.
Thompson
,
C.
,
Fu
,
S.
,
Heywood
,
H.
,
Knight
,
M.
, and
Thorpe
,
S.
,
2020
, “
Mechanical Stimulation: A Crucial Element of Organ-on-Chip Models
,”
Front. Bioeng. Biotechnol.
,
8
, p.
602646
.10.3389/fbioe.2020.602646
26.
Mitchell
,
T.
,
Feng
,
N.
,
Lam
,
Y.
,
Michael
,
P.
,
Santos
,
M.
, and
Wise
,
S.
,
2022
, “
Engineering Vascular Bioreactor Systems to Closely Mimic Physiological Forces In Vitro
,”
Tissue Eng. Part B.
,
29
(
3
), pp.
232
243
.10.1089/ten.TEB.2022.0158
27.
Helms
,
F.
,
Lau
,
S.
,
Aper
,
T.
,
Zippusch
,
S.
,
Klingenberg
,
M.
,
Haverich
,
A.
,
Wilhelmi
,
M.
, and
Boer
,
U.
,
2021
, “
A 3-Layered Bioartificial Blood Vessel With Physiological Wall Architecture Generated by Mechanical Stimulation
,”
Ann. Biomed. Eng.
,
49
(
9
), pp.
2066
2079
.10.1007/s10439-021-02728-9
28.
Piola
,
M.
,
Ruiter
,
M.
,
Vismara
,
R.
,
Mastrullo
,
V.
,
Agrifoglio
,
M.
,
Zanobini
,
M.
,
Pesce
,
M.
,
Soncini
,
M.
, and
Fiore
,
G. B.
,
2017
, “
Full Mimicking of Coronary Hemodynamics for Ex-Vivo Stimulation of Human Saphenous Veins
,”
Ann. Biomed. Eng.
,
45
(
4
), pp.
884
897
.10.1007/s10439-016-1747-7
29.
Zimmerling
,
A.
,
Yazdanpanah
,
Z.
,
Cooper
,
D.
,
Johnston
,
J. D.
, and
Chen
,
X. B.
,
2021
, “
3D Printing PCL/nHA Bone Scaffolds: Exploring the Influence of Material Synthesis Techniques
,”
Biomater. Res.
,
25
(
3
).10.1186/s40824-021-00204-y
30.
Mondrinos
,
M.
,
Lelkes
,
P.
,
Samadikuchaksaraei
,
A.
,
Mantalaris
,
A.
, and
Polak
,
J.
,
2014
, “
Lungs
,”
Principles of Tissue Engineering
, 4th ed.,
Academic Press/Elsevier
, San Diego, CA, pp.
1560
1577
.
31.
Chen
,
E.
,
Toksoy
,
Z.
,
Davis
,
B.
, and
Geibel
,
J.
,
2021
, “
3D Bioprinting of Vascularized Tissues for In Vitro and In Vivo Applications
,”
Front. Bioeng. Biotechnol.
,
9
, p.
664188
.10.3389/fbioe.2021.664188
32.
Tomasina
,
C.
,
Bodet
,
T.
,
Mota
,
C.
,
Moroni
,
L.
, and
Camarero-Espinosa
,
S.
,
2019
, “
Bioprinting Vasculature: Materials, Cells and Emergent Techniques
,”
Materials
,
12
(
17
), p.
2701
.10.3390/ma12172701
33.
Leung
,
C.
,
Wadsworth
,
S.
,
Yang
,
J.
, and
Dorscheid
,
D.
,
2020
, “
Structural and Functional Variations in Human Bronchial Epithelial Cells Cultured in Air-Liquid Interface Using Different Growth Media
,”
Am. J. Physiol.: Lung Cell. Mol. Physiol.
,
318
(
5
), pp.
L1063
L1073
.10.1152/ajplung.00190.2019
You do not currently have access to this content.