Abstract

High-grade gliomas (HGG) are the most common primary brain malignancy and continue to be associated with a dismal prognosis (median survival rate of 15–18 months) with standard of care therapy. Magnetic hyperthermia therapy (MHT) is an emerging intervention that leverages the ferromagnetic properties of magnetic iron-oxide nanoparticles (MIONPs) to target cancer cells that are otherwise left behind after resection. We report a novel port device to facilitate localization, delivery, and temperature measurement of MIONPs within a target lesion for MHT therapy. We conducted an in-depth literature and intellectual property review to define specifications of the conceived port device. After setting the design parameters, a thorough collaboration with neurological surgeons guided the iterative modeling process. A prototype was developed using Fusion 360 (Autodesk, San Rafael, CA) and printed on a Form 3 printer (Formlabs, Medford, MA) in Durable resin. The prototype was then tested in a phantom skull printed on a Pro-Jet 660Pro 3D printer (3D Systems, Rock Hill, SC) and a brain model based on mechanical and electrochemical properties of native brain tissue. This phantom underwent MHT heating tests using an alternating magnetic field (AMF) sequence based on current MHT workflow. Successful localization, delivery, and temperature measurement were demonstrated. The purpose of this study was twofold: first, to create and validate the procedural framework for a novel device, providing the groundwork for an upcoming comprehensive animal trial and second, to elucidate a cooperative approach between engineers and clinicians that propels advancements in medical innovation.

References

1.
Francis
,
S. S.
,
Ostrom
,
Q. T.
,
Cote
,
D. J.
,
Smith
,
T. R.
,
Claus
,
E.
, and
Barnholtz-Sloan
,
J. S.
,
2022
, “
The Epidemiology of Central Nervous System Tumors
,”
Hematol. Oncol. Clin. North Am.
,
36
(
1
), pp.
23
42
.10.1016/j.hoc.2021.08.012
2.
Stupp
,
R.
,
Mason
,
W. P.
,
van den Bent
,
M. J.
,
Weller
,
M.
,
Fisher
,
B.
,
Taphoorn
,
M. J.
,
Belanger
,
K.
, et al.,
2005
, “
Radiotherapy Plus Concomitant and Adjuvant Temozolomide for Glioblastoma
,”
N. Engl. J. Med.
,
352
(
10
), pp.
987
996
.10.1056/NEJMoa043330
3.
Ostrom
,
Q. T.
,
Bauchet
,
L.
,
Davis
,
F. G.
,
Deltour
,
I.
,
Fisher
,
J. L.
,
Langer
,
C. E.
,
Pekmezci
,
M.
, et al.,
2014
, “
The Epidemiology of Glioma in Adults: A ‘State of the Science’ Review
,”
Neuro-Oncology
,
16
(
7
), pp.
896
913
.10.1093/neuonc/nou087
4.
Orringer
,
D.
,
Lau
,
D.
,
Khatri
,
S.
,
Zamora-Berridi
,
G. J.
,
Zhang
,
K.
,
Wu
,
C.
,
Chaudhary
,
N.
, and
Sagher
,
O.
,
2012
, “
Extent of Resection in Patients With Glioblastoma: Limiting Factors, Perception of Resectability, and Effect on Survival
,”
J. Neurosurg.
,
117
(
5
), pp.
851
859
.10.3171/2012.8.JNS12234
5.
Minniti
,
G.
,
Niyazi
,
M.
,
Alongi
,
F.
,
Navarria
,
P.
, and
Belka
,
C.
,
2021
, “
Current Status and Recent Advances in Reirradiation of Glioblastoma
,”
Radiat. Oncol.
,
16
(
1
), p.
36
.10.1186/s13014-021-01767-9
6.
Schupper
,
A. J.
, and
Hadjipanayis
,
C. G.
,
2023
, “
Novel Approaches to Targeting Gliomas at the Leading/Cutting Edge
,”
J. Neurosurg.
,
1
(
aop
), pp.
1
9
.10.3171/2023.1.JNS221798
7.
Glas
,
M.
,
Rath
,
B. H.
,
Simon
,
M.
,
Reinartz
,
R.
,
Schramme
,
A.
,
Trageser
,
D.
,
Eisenreich
,
R.
, et al.,
2010
, “
Residual Tumor Cells Are Unique Cellular Targets in Glioblastoma
,”
Ann. Neurol.
,
68
(
2
), pp.
264
269
.10.1002/ana.22036
8.
Mahmoudi
,
K.
,
Bouras
,
A.
,
Bozec
,
D.
,
Ivkov
,
R.
, and
Hadjipanayis
,
C.
,
2018
, “
Magnetic Hyperthermia Therapy for the Treatment of Glioblastoma: A Review of the Therapy's History, Efficacy and Application in Humans
,”
Int. J. Hyperthermia
,
34
(
8
), pp.
1316
1328
.10.1080/02656736.2018.1430867
9.
Gupta
,
R.
, and
Sharma
,
D.
,
2019
, “
Evolution of Magnetic Hyperthermia for Glioblastoma Multiforme Therapy
,”
ACS Chem. Neurosci.
,
10
(
3
), pp.
1157
1172
.10.1021/acschemneuro.8b00652
10.
Maier-Hauff
,
K.
,
Ulrich
,
F.
,
Nestler
,
D.
,
Niehoff
,
H.
,
Wust
,
P.
,
Thiesen
,
B.
,
Orawa
,
H.
,
Budach
,
V.
, and
Jordan
,
A.
,
2011
, “
Efficacy and Safety of Intratumoral Thermotherapy Using Magnetic Iron-Oxide Nanoparticles Combined With External Beam Radiotherapy on Patients With Recurrent Glioblastoma Multiforme
,”
J. Neurooncol.
,
103
(
2
), pp.
317
324
.10.1007/s11060-010-0389-0
11.
Regan
,
J. M.
,
Worley
,
E.
,
Shelburne
,
C.
,
Pullarkat
,
R.
, and
Watson
,
J. C.
,
2015
, “
Burr Hole Washout Versus Craniotomy for Chronic Subdural Hematoma: Patient Outcome and Cost Analysis
,”
PLoS One
,
10
(
1
), p.
e0115085
.10.1371/journal.pone.0115085
12.
Lewis
,
O.
,
Woolley
,
M.
,
Johnson
,
D.
,
Rosser
,
A.
,
Barua
,
N. U.
,
Bienemann
,
A. S.
,
Gill
,
S. S.
, and
Evans
,
S.
,
2016
, “
Chronic, Intermittent Convection-Enhanced Delivery Devices
,”
J. Neurosci. Methods
,
259
, pp.
47
56
.10.1016/j.jneumeth.2015.11.008
13.
Tanner
,
P. G.
,
Holtmannspötter
,
M.
,
Tonn
,
J.-C.
, and
Goldbrunner
,
R.
,
2007
, “
Effects of Drug Efflux on Convection-Enhanced Paclitaxel Delivery to Malignant Gliomas: Technical Note
,”
Neurosurgery
,
61
(
4
), pp.
E880
E882
.10.1227/01.NEU.0000298922.77921.F2
14.
Peiravi
,
M.
,
Eslami
,
H.
,
Ansari
,
M.
, and
Zare-Zardini
,
H.
,
2022
, “
Magnetic Hyperthermia: Potentials and Limitations
,”
J. Indian Chem. Soc.
,
99
(
1
), p.
100269
.10.1016/j.jics.2021.100269
15.
Gill
,
T.
,
Barua
,
N. U.
,
Woolley
,
M.
,
Bienemann
,
A. S.
,
Johnson
,
D. E.
,
Murray
,
G.
,
Fennelly
,
C.
, et al.,
2013
, “
In Vitro and In Vivo Testing of a Novel Recessed-Step Catheter for Reflux-Free Convection-Enhanced Drug Delivery to the Brain
,”
J. Neurosci. Methods
,
219
(
1
), pp.
1
9
.10.1016/j.jneumeth.2013.06.008
16.
Vogel
,
P.
,
Kampf
,
T.
,
Rückert
,
M.
,
Grüttner
,
C.
,
Kowalski
,
A.
,
Teller
,
H.
, and
Behr
,
V.
,
2021
, “
Synomag®: the New High-Performance Tracer for Magnetic Particle Imaging
,”
Int. J. Magn. Part. Imaging IJMPI
,
7
(
1
), Article No. 2103003.10.18416/IJMPI.2021.2103003
17.
Attaluri
,
A.
,
Jackowski
,
J.
,
Sharma
,
A.
,
Kandala
,
S. K.
,
Nemkov
,
V.
,
Yakey
,
C.
,
DeWeese
,
T. L.
,
Kumar
,
A.
,
Goldstein
,
R. C.
, and
Ivkov
,
R.
,
2020
, “
Design and Construction of a Maxwell-Type Induction Coil for Magnetic Nanoparticle Hyperthermia
,”
Int. J. Hyperthermia
,
37
(
1
), pp.
1
14
.10.1080/02656736.2019.1704448
18.
Chen
,
Z.-J.
,
Gillies
,
G. T.
,
Broaddus
,
W. C.
,
Prabhu
,
S. S.
,
Fillmore
,
H.
,
Mitchell
,
R. M.
,
Corwin
,
F. D.
, and
Fatouros
,
P. P.
,
2004
, “
A Realistic Brain Tissue Phantom for Intraparenchymal Infusion Studies
,”
J. Neurosurg.
,
101
(
2
), pp.
314
322
.10.3171/jns.2004.101.2.0314
19.
Grauer
,
O.
,
Jaber
,
M.
,
Hess
,
K.
,
Weckesser
,
M.
,
Schwindt
,
W.
,
Maring
,
S.
,
Wölfer
,
J.
, and
Stummer
,
W.
,
2019
, “
Combined Intracavitary Thermotherapy With Iron Oxide Nanoparticles and Radiotherapy as Local Treatment Modality in Recurrent Glioblastoma Patients
,”
J. Neuro-Oncol.
,
141
(
1
), pp.
83
94
.10.1007/s11060-018-03005-x
20.
Wilson
,
R.
,
Osborne
,
C.
, and
Halsey
,
C.
,
2018
, “
The Use of Ommaya Reservoirs to Deliver Central Nervous System-Directed Chemotherapy in Childhood Acute Lymphoblastic Leukaemia
,”
Paediatr. Drugs
,
20
(
4
), pp.
293
301
.10.1007/s40272-018-0298-9
21.
Zubair
,
A.
, and
De Jesus
,
O.
,
2022
,
Ommaya Reservoir
,
StatPearls Publishing
,
Treasure Island, FL
.
22.
Nurchi
,
G.
,
1984
, “
Use of Intraventricular and Intrathecal Morphine in Intractable Pain Associated With Cancer
,”
Neurosurgery
,
15
(
6
), pp.
801
803
.10.1227/00006123-198412000-00005
23.
Sharma
,
A.
,
Jangam
,
A.
,
Shen
,
J. L. Y.
,
Ahmad
,
A.
,
Arepally
,
N.
,
Rodriguez
,
B.
,
Borrello
,
J.
, et al.,
2023
, “
Validation of a Temperature-Feedback Controlled Automated Magnetic Hyperthermia Therapy Device
,”
Cancers
,
15
(
2
), p.
327
.10.3390/cancers15020327
You do not currently have access to this content.