Abstract

The circumstances in which we mechanically test and critically assess human calvarium tissue would find relevance under conditions encompassing real-world head impacts. These conditions include, among other variables, impact velocities, and strain rates. Compared to quasi-static loading on calvaria, there is less reporting on the impact loading of the calvaria and consequently, there are relatively fewer mechanical properties on calvaria at relevant impact loading rates available in the literature. The purpose of this work was to report on the mechanical response of 23 human calvarium specimens subjected to dynamic four-point bending impacts. Impacts were performed using a custom-built four-point impact apparatus at impact velocities of 0.86–0.89 m/s resulting in surface strain rates of 2–3/s—representative of strain rates observed in vehicle collisions and blunt impacts. The study revealed comparable effective bending moduli (11–15 GPa) to the limited work reported on the impact mechanics of calvaria in the literature, however, fracture bending stress (10–47 MPa) was relatively less. As expected, surface strains at fracture (0.21–0.25%) were less compared to studies that performed quasi-static bending. Moreover, the study revealed no significant differences in mechanical response between male and female calvaria. The findings presented in this work are relevant to many areas including validating surrogate skull fracture models in silico or laboratory during impact and optimizing protective devices used by civilians to reduce the risk of a serious head injury.

References

1.
Delaney
,
J. S.
,
2004
, “
Head Injuries Presenting to Emergency Departments in the United States From 1990 to 1999 for Ice Hockey, Soccer, and Football
,”
Clin. J. Sport Med.
,
14
(
2
), pp.
80
87
.10.1097/00042752-200403000-00005
2.
Weisenbach
,
C. A.
,
Logsdon
,
K.
,
Salzar
,
R. S.
,
Chancey
,
V. C.
, and
Brozoski
,
F.
,
2018
, “
Preliminary Investigation of Skull Fracture Patterns Using an Impactor Representative of Helmet Back-Face Deformation
,”
Mil. Med.
,
183
(
Suppl_1
), pp.
287
293
.10.1093/milmed/usx210
3.
Melvin
,
J. W.
, and
Yoganandan
,
N.
,
2015
, “
Biomechanics of Brain Injury: A Historical Perspective
,”
Accidental Injury: Biomechanics and Prevention
,
N.
Yoganandan
,
A. M.
Nahum
, and
J. W.
Melvin
, eds.,
Springer
,
New York
, pp.
221
245
.
4.
Aare
,
M.
, and
Halldin
,
P.
,
2003
, “
A New Laboratory Rig for Evaluating Helmets Subject to Oblique Impacts
,”
Traffic Inj. Prev.
,
4
(
3
), pp.
240
248
.10.1080/15389580309879
5.
Adanty
,
K.
,
Clark
,
J. M.
,
Post
,
A.
,
Hoshizaki
,
T. B.
, and
Gilchrist
,
M. D.
,
2020
, “
Comparing Two Proposed Protocols to Test the Oblique Response of Cycling Helmets to Fall Impacts
,”
Int. J. Crashworthiness
,
25
(
6
), pp.
648
663
.10.1080/13588265.2019.1628479
6.
Karton
,
C.
,
Hoshizaki
,
T. B.
, and
Gilchrist
,
M. D.
,
2020
, “
A Novel Repetitive Head Impact Exposure Measurement Tool Differentiates Player Position in National Football League
,”
Sci. Rep.
,
10
(
1
), p.
1200
.10.1038/s41598-019-54874-9
7.
Knowles
,
B. M.
, and
Dennison
,
C. R.
,
2017
, “
Predicting Cumulative and Maximum Brain Strain Measures From Hybrid III Head Kinematics: A Combined Laboratory Study and Post-Hoc Regression Analysis
,”
Ann. Biomed. Eng.
,
45
(
9
), pp.
2146
2158
.10.1007/s10439-017-1848-y
8.
Li
,
Y.
,
Ouellet
,
S.
,
Vette
,
A. H.
,
Raboud
,
D.
,
Martin
,
A.
, and
Dennison
,
C. R.
,
2021
, “
Evaluation of the Kinematic Biofidelity and Inter-Test Repeatability of Global Accelerations and Brain Parenchyma Pressure for a Head–Brain Physical Model
,”
ASME J. Biomech. Eng.
,
143
(
9
), p.
091006
.10.1115/1.4050752
9.
Farid
,
M. H.
,
Eslaminejad
,
A.
,
Ramzanpour
,
M.
,
Ziejewski
,
M.
, and
Karami
,
G.
,
2019
, “
The Strain Rates of the Brain and Skull Under Dynamic Loading
,”
ASME
Paper No. IMECE2018-88300. 10.1115/IMECE2018-88300
10.
Zhai
,
X.
,
Nauman
,
E. A.
,
Moryl
,
D.
,
Lycke
,
R.
, and
Chen
,
W. W.
,
2020
, “
The Effects of Loading-Direction and Strain-Rate on the Mechanical Behaviors of Human Frontal Skull Bone
,”
J. Mech. Behav. Biomed. Mater.
,
103
, p.
103597
.10.1016/j.jmbbm.2019.103597
11.
Adanty
,
K.
,
Tronchin
,
O.
,
Bhagavathula
,
K. B.
,
Rabey
,
K. N.
,
Doschak
,
M. R.
,
Romanyk
,
D.
,
Hogan
,
J. D.
,
Ouellet
,
S.
,
Plaisted
,
T. A.
,
Satapathy
,
S. S.
, and
Dennison
,
C. R.
,
2020
, “
On the Ability of Morphometric Indices of Skull Diploë to Explain Variation in Bone Fracture Force and Fracture Strain in Four-Point Bending: A Preliminary Step Toward a Simulant Fracture Model
,”
IRCOBI Conference 2020
, Online, pp.
821
822
.https://www.researchgate.net/publication/344278232_On_the_Ability_of_Morphometric_Indices_of_Skull_Diploe_to_Explain_Variation_in_Bone_Fracture_Force_and_Fracture_Strain_in_Four-Point_Bending-_A_Preliminary_Step_Toward_A_Simulant_Fracture_Model
12.
Auperrin
,
A.
,
Delille
,
R.
,
Lesueur
,
D.
,
Bruyère
,
K.
,
Masson
,
C.
, and
Drazétic
,
P.
,
2014
, “
Geometrical and Material Parameters to Assess the Macroscopic Mechanical Behaviour of Fresh Cranial Bone Samples
,”
J. Biomech.
,
47
(
5
), pp.
1180
1185
.10.1016/j.jbiomech.2013.10.060
13.
Delille
,
R.
,
Lesueur
,
D.
,
Potier
,
P.
,
Drazetic
,
P.
, and
Markiewicz
,
E.
,
2007
, “
Experimental Study of the Bone Behaviour of the Human Skull Bone for the Development of a Physical Head Model
,”
Int. J. Crashworthiness
,
12
(
2
), pp.
101
108
.10.1080/13588260701433081
14.
Hubbard
,
R. P.
,
1971
, “
Flexure of Layered Cranial Bone
,”
J. Biomech.
,
4
(
4
), pp.
251
263
.10.1016/0021-9290(71)90031-5
15.
Adanty
,
K.
,
Rabey
,
K. N.
,
Doschak
,
M. R.
,
Bhagavathula
,
K. B.
,
Hogan
,
J. D.
,
Romanyk
,
D. L.
,
Adeeb
,
S.
,
Ouellet
,
S.
,
Plaisted
,
T. A.
,
Satapathy
,
S. S.
, and
Dennison
,
C. R.
,
2021
, “
Cortical and Trabecular Morphometric Properties of the Human Calvarium
,”
Bone
,
148
, p.
115931
.10.1016/j.bone.2021.115931
16.
Doube
,
M.
,
Kłosowski
,
M. M.
,
Arganda-Carreras
,
I.
,
Cordelières
,
F. P.
,
Dougherty
,
R. P.
,
Jackson
,
J. S.
,
Schmid
,
B.
,
Hutchinson
,
J. R.
, and
Shefelbine
,
S. J.
,
2010
, “
BoneJ: Free and Extensible Bone Image Analysis in ImageJ
,”
Bone
,
47
(
6
), pp.
1076
1079
.10.1016/j.bone.2010.08.023
17.
Roark
,
R. J.
,
Young
,
W. C.
, and
Budynas
,
R. G.
,
2002
,
Roark's Formulas for Stress and Strain
,
McGraw-Hill
,
New York
.
18.
Dennison
,
C. R.
, and
Wild
,
P. M.
,
2008
, “
Enhanced Sensitivity of an in-Fibre Bragg Grating Pressure Sensor Achieved Through Fibre Diameter Reduction
,”
Meas. Sci. Technol.
,
19
(
12
), p.
125301
.10.1088/0957-0233/19/12/125301
19.
Tian
,
H.
,
Liu
,
D.
,
Wang
,
Y.
, and
Wang
,
Q.
,
2019
, “
Effect of Adhesive Type on the Sensitivity Coefficient of FBG Sensor Bonded on the Surface of CFRP
,”
Optoelectron. Lett.
,
15
(
4
), pp.
264
268
.10.1007/s11801-019-8183-5
20.
Al-Fakih
,
E.
,
Osman
,
N. A. A.
, and
Adikan
,
F. R. M.
,
2012
, “
The Use of Fiber Bragg Grating Sensors in Biomechanics and Rehabilitation Applications: The State-of-the-Art and Ongoing Research Topics
,”
Sensors (Basel)
,
12
(
10
), pp.
12890
12926
.10.3390/s121012890
21.
Houg
,
K. P.
,
Armijo
,
L.
,
Doschak
,
M. R.
,
Major
,
P. W.
,
Popowics
,
T.
,
Dennison
,
C. R.
, and
Romanyk
,
D. L.
,
2021
, “
Experimental Repeatability, Sensitivity, and Reproducibility of Force and Strain Measurements From Within the Periodontal Ligament Space During Ex Vivo Swine Tooth Loading
,”
J. Mech. Behav. Biomed. Mater.
,
120
, p.
104562
.10.1016/j.jmbbm.2021.104562
22.
Adeeb
,
S.
,
2011
,
Introduction to Solid Mechanics and Finite Element Analysis Using Mathematica
,
Kendall Hunt
,
Dubuque, IA
.
23.
Hayes
,
M. D.
,
Edwards
,
D. B.
, and
Shah
,
A. R.
,
2015
, “
Fractography Basics
,”
Fractography in Failure Analysis of Polymers
,
M. D.
Hayes
,
D. B.
Edwards
, and
A. R.
Shah
, eds.,
William Andrew Publishing
,
Oxford, UK
, pp.
48
92
.
24.
Davis
,
M. T.
,
Loyd
,
A. M.
,
Shen
,
H. H.
,
Mulroy
,
M. H.
,
Nightingale
,
R. W.
,
Myers
,
B. S.
, and
Bass
,
C. D.
,
2012
, “
The Mechanical and Morphological Properties of 6 Year-Old Cranial Bone
,”
J. Biomech.
,
45
(
15
), pp.
2493
2498
.10.1016/j.jbiomech.2012.07.001
25.
Igo
,
B. J.
,
Cottler
,
P. S.
,
Black
,
J. S.
, and
Panzer
,
M. B.
,
2021
, “
The Mechanical and Microstructural Properties of the Pediatric Skull
,”
J. Mech. Behav. Biomed. Mater.
,
120
, p.
104578
.10.1016/j.jmbbm.2021.104578
26.
Lee
,
J. H. C.
,
Ondruschka
,
B.
,
Falland-Cheung
,
L.
,
Scholze
,
M.
,
Hammer
,
N.
,
Tong
,
D. C.
, and
Waddell
,
J. N.
,
2019
, “
An Investigation on the Correlation Between the Mechanical Properties of Human Skull Bone, Its Geometry, Microarchitectural Properties, and Water Content
,”
J. Healthcare Eng.
,
2019
, pp.
1
8
.10.1155/2019/6515797
27.
Margulies
,
S. S.
, and
Thibault
,
K. L.
,
2000
, “
Infant Skull and Suture Properties: Measurements and Implications for Mechanisms of Pediatric Brain Injury
,”
ASME J. Biomech. Eng.
,
122
(
4
), pp.
364
371
.10.1115/1.1287160
28.
Eng
,
J.
,
2003
, “
Sample Size Estimation: How Many Individuals Should Be Studied?
,”
Radiology
,
227
(
2
), pp.
309
313
.10.1148/radiol.2272012051
29.
Rahmoun
,
J.
,
Auperrin
,
A.
,
Delille
,
R.
,
Naceur
,
H.
, and
Drazetic
,
P.
,
2014
, “
Characterization and Micromechanical Modeling of the Human Cranial Bone Elastic Properties
,”
Mech. Res. Commun.
,
60
, pp.
7
14
.10.1016/j.mechrescom.2014.04.001
30.
Motherway
,
J. A.
,
Verschueren
,
P.
,
Van der Perre
,
G.
,
Vander Sloten
,
J.
, and
Gilchrist
,
M. D.
,
2009
, “
The Mechanical Properties of Cranial Bone: The Effect of Loading Rate and Cranial Sampling Position
,”
J. Biomech.
,
42
(
13
), pp.
2129
2135
.10.1016/j.jbiomech.2009.05.030
31.
Zwirner
,
J.
,
Ondruschka
,
B.
,
Scholze
,
M.
,
Workman
,
J.
,
Thambyah
,
A.
, and
Hammer
,
N.
,
2021
, “
The Dynamic Impact Behavior of the Human Neurocranium
,”
Sci. Rep.
,
11
(
1
), p.
11331
.10.1038/s41598-021-90322-3
32.
McElhaney
,
J. H.
,
Fogle
,
J. L.
,
Melvin
,
J. W.
,
Haynes
,
R. R.
,
Roberts
,
V. L.
, and
Alem
,
N. M.
,
1970
, “
Mechanical Properties of Cranial Bone
,”
J. Biomech.
,
3
(
5
), pp.
495
511
.10.1016/0021-9290(70)90059-X
33.
Chitchumnong
,
P.
,
Brooks
,
S. C.
, and
Stafford
,
G. D.
,
1989
, “
Comparison of Three- and Four-Point Flexural Strength Testing of Denture-Base Polymers
,”
Dent. Mater.
,
5
(
1
), pp.
2
5
.10.1016/0109-5641(89)90082-1
34.
Hein
,
P. R. G.
,
Brancheriau
,
L.
,
Hein
,
P. R. G.
, and
Brancheriau
,
L.
,
2018
, “
Comparison Between Three-Point and Four-Point Flexural Tests to Determine Wood Strength of Eucalyptus Specimens
,”
Maderas: Cienc. Tecnol.
,
20
(
3
), pp.
333
342
.10.4067/S0718-221X2018005003401
35.
Topp
,
T.
,
Müller
,
T.
,
Huss
,
S.
,
Kann
,
P. H.
,
Weihe
,
E.
,
Ruchholtz
,
S.
, and
Zettl
,
R. P.
,
2012
, “
Embalmed and Fresh Frozen Human Bones in Orthopedic Cadaveric Studies: Which Bone Is Authentic and Feasible?
,”
Acta Orthop.
,
83
(
5
), pp.
543
547
.10.3109/17453674.2012.727079
36.
Nahum
,
A. M.
,
Gatts
,
J. D.
,
Gadd
,
C. W.
, and
Danforth
,
J.
,
1968
,
Impact Tolerance of the Skull and Face
,
SAE International
,
Warrendale, PA
, p.
680785
.
37.
Crandall
,
J. R.
,
1994
,
The Preservation of Human Surrogates for Biomechanical Studies
,
University of Virginia
,
Charlottesville, VA
.
38.
Pelker
,
R. R.
,
Friedlaender
,
G. E.
,
Markham
,
T. C.
,
Panjabi
,
M. M.
, and
Moen
,
C. J.
,
1983
, “
Effects of Freezing and Freeze-Drying on the Biomechanical Properties of Rat Bone
,”
J. Orthop. Res.
,
1
(
4
), pp.
405
411
.10.1002/jor.1100010409
39.
Lee
,
K. E.
, and
Pelker
,
R. R.
,
1985
, “
Effect of Freezing on Histologic and Biomechanical Failure Patterns in the Rabbit Capital Femoral Growth Plate
,”
J. Orthop. Res.
,
3
(
4
), pp.
514
515
.10.1002/jor.1100030415
40.
Nazarian
,
A.
,
Hermannsson
,
B. J.
,
Muller
,
J.
,
Zurakowski
,
D.
, and
Snyder
,
B. D.
,
2009
, “
Effects of Tissue Preservation on Murine Bone Mechanical Properties
,”
J. Biomech.
,
42
(
1
), pp.
82
86
.10.1016/j.jbiomech.2008.09.037
41.
Mick
,
E.
,
Steinke
,
H.
,
Wolfskämpf
,
T.
,
Wieding
,
J.
,
Hammer
,
N.
,
Schulze
,
M.
,
Souffrant
,
R.
, and
Bader
,
R.
,
2015
, “
Influence of Short-Term Fixation With Mixed Formalin or Ethanol Solution on the Mechanical Properties of Human Cortical Bone
,”
Curr. Dir. Biomed. Eng.
,
1
(
1
), pp.
335
339
.10.1515/cdbme-2015-0083
42.
Wilke
,
H.-J.
,
Krischak
,
S.
, and
Claes
,
L. E.
,
1996
, “
Formalin Fixation Strongly Influences Biomechanical Properties of the Spine
,”
J. Biomech.
,
29
(
12
), pp.
1629
1631
.10.1016/S0021-9290(96)80016-9
43.
Evans
,
F. G.
,
1973
,
Mechanical Properties of Bone
,
Charles C. Thomas
,
Springfield, IL
.
44.
Carothers
,
C.
,
Smith
,
F.
, and
Calabrasi
,
P.
,
1949
, “Government Report,”
Naval Medical Research Institute and National Bureau of Standards
, Report No. NM 001 056.02.13.
45.
Burkhart
,
K. J.
,
Nowak
,
T. E.
,
Blum
,
J.
,
Kuhn
,
S.
,
Welker
,
M.
,
Sternstein
,
W.
,
Mueller
,
L. P.
, and
Rommens
,
P. M.
,
2010
, “
Influence of Formalin Fixation on the Biomechanical Properties of Human Diaphyseal Bone
,”
Biomed. Tech. (Berlin)
,
55
(
6
), pp.
361
365
.10.1515/bmt.2010.043
46.
Ural
,
A.
,
Zioupos
,
P.
,
Buchanan
,
D.
, and
Vashishth
,
D.
,
2011
, “
The Effect of Strain Rate on Fracture Toughness of Human Cortical Bone: A Finite Element Study
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
7
), pp.
1021
1032
.10.1016/j.jmbbm.2011.03.011
47.
Wood
,
J. L.
,
1971
, “
Dynamic Response of Human Cranial Bone
,”
J. Biomech.
,
4
(
1
), pp.
1
12
.10.1016/0021-9290(71)90010-8
48.
Nieves
,
J. W.
,
Formica
,
C.
,
Ruffing
,
J.
,
Zion
,
M.
,
Garrett
,
P.
,
Lindsay
,
R.
, and
Cosman
,
F.
,
2004
, “
Males Have Larger Skeletal Size and Bone Mass Than Females, Despite Comparable Body Size
,”
J. Bone Miner. Res.
,
20
(
3
), pp.
529
535
.10.1359/JBMR.041005
You do not currently have access to this content.