Abstract

Manual wheelchair (MWC) locomotion exposes the user's upper-body to large and repetitive loads, which can lead to upper limbs pain and injuries. A thinner understanding of the influence of MWC settings on propulsion biomechanics could allow for a better adaptation of MWC configuration to the user, thus limiting the risk of developing such injuries. Advantageously compared to experimental studies, simulation methods allow numerous configurations to be tested. Recent studies have developed predictive locomotion simulation using optimal control methods. However, those models do not consider MWC anteroposterior stability, potentially resulting in unreasonable propulsion strategies. To this extent, this study aimed at confirming if constraining MWC anteroposterior stability in the optimal control formulation could lead to a different simulated movement. For this purpose, a four-link rigid-body system was used in a forward dynamics optimization paired with an anteroposterior stability constraint to predict MWC locomotion dynamics of the upper limbs during both startup and steady-state propulsion. Simulation results indicated the occurrence of MWC tipping when stability was not constrained, and that the constrained optimal control algorithm predicted different propulsion strategies. Hence, further proceedings of MWC locomotion simulation and optimal control investigations should take the anteroposterior stability into account to achieve more realistic simulations. Additionally, the implementation of the anteroposterior stability constrains unexpectedly resulted in a reduction of the computational time.

References

1.
Simmons
,
S. F.
,
Schnelle
,
J. F.
,
MacRae
,
P. G.
, and
Ouslander
,
J. G.
,
1995
, “
Wheelchairs as Mobility Restraints: Predictors of Wheelchair Activity in Nonambulatory Nursing Home Residents
,”
J. Am. Geriatr. Soc
,
43
(
4
), pp.
384
388
.10.1111/j.1532-5415.1995.tb05812.x
2.
Curtis
,
K. A.
,
Drysdale
,
G. A.
,
Lanza
,
R. D.
,
Kolber
,
M.
,
Vitolo
,
R. S.
, and
West
,
R.
,
1999
, “
Shoulder Pain in Wheelchair Users With Tetraplegia and Paraplegia
,”
Arch. Phys. Med. Rehabil.
,
80
(
4
), pp.
453
457
.10.1016/S0003-9993(99)90285-X
3.
Finlayson
,
M.
, and
van Denend
,
T.
,
2003
, “
Experiencing the Loss of Mobility: Perspectives of Older Adults With MS
,”
Disabil. Rehabil.
,
25
(
20
), pp.
1168
1180
.10.1080/09638280310001596180
4.
Medola
,
F. O.
,
Elui
,
V. M. C.
,
Santana
,
C. D. S.
, and
Fortulan
,
C. A.
,
2014
, “
Aspects of Manual Wheelchair Configuration Affecting Mobility: A Review
,”
J. Phys. Theory Sci.
,
26
(
2
), pp.
313
318
.10.1589/jpts.26.313
5.
Rouvier
,
T.
,
Louessard
,
A.
,
Simonetti
,
E.
,
Hybois
,
S.
,
Bascou
,
J.
,
Pontonnier
,
C.
,
Pillet
,
H.
, and
Sauret
,
C.
,
2022
, “
Manual Wheelchair Biomechanics While Overcoming Various Environmental Barriers: A Systematic Review
,”
PLoS One
,
17
(
6
), p.
e0269657
.10.1371/journal.pone.0269657
6.
Van Der Woude
,
L. H. V.
,
Veeger
,
H. E. J.
,
Dallmeijer
,
A. J.
,
Janssen
,
T. W. J.
, and
Rozendaal
,
L. A.
,
2001
, “
Biomechanics and Physiology in Active Manual Wheelchair Propulsion
,”
Med. Eng. Phys.
,
23
(
10
), pp.
713
733
.10.1016/S1350-4533(01)00083-2
7.
Mason
,
B. S.
,
van der Woude
,
L. H. V.
, and
Goosey-Tolfrey
,
V. L.
,
2013
, “
The Ergonomics of Wheelchair Configuration for Optimal Performance in the Wheelchair Court Sports
,”
Sports Med.
,
43
(
1
), pp.
23
38
.10.1007/s40279-012-0005-x
8.
Leary
,
M.
,
Gruijters
,
J.
,
Mazur
,
M.
,
Subic
,
A.
,
Burton
,
M.
, and
Fuss
,
F. K.
,
2012
, “
A Fundamental Model of Quasi-Static Wheelchair Biomechanics
,”
Med. Eng. Phys.
,
34
(
9
), pp.
1278
1286
.10.1016/j.medengphy.2011.12.018
9.
Richter
,
W. M.
,
2001
, “
The Effect of Seat Position on Manual Wheelchair Propulsion Biomechanics: A Quasi-Static Model-Based Approach
,”
Med. Eng. Phys.
,
23
(
10
), pp.
707
712
.10.1016/S1350-4533(01)00074-1
10.
Fritsch
,
C.
,
Poulet
,
Y.
,
Bascou
,
J.
,
Thoreux
,
P.
, and
Sauret
,
C.
,
2022
, “
How Was Studied the Effect of Manual Wheelchair Configuration on Propulsion Biomechanics: A Systematic Review on Methodologies
,”
Front. Rehabil. Sci.
,
3
, pp.
1
19
.10.3389/fresc.2022.863113
11.
Brown
,
C.
, and
McPhee
,
J.
,
2020
, “
Predictive Forward Dynamic Simulation of Manual Wheelchair Propulsion on a Rolling Dynamometer
,”
ASME J. Biomech. Eng.
,
142
(
7
), p. 071008.10.1115/1.4046298
12.
Ackermann
,
M.
,
Leonardi
,
F.
,
Costa
,
H. R.
, and
Fleury
,
A. T.
,
2014
, “
Modeling and Optimal Control Formulation for Manual Wheelchair Locomotion: The Influence of Mass and Slope on Performance
,”
5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics
, Sao Paulo, Brazil, Aug. 12–15, pp.
1079
1084
.10.1109/BIOROB.2014.6913924
13.
Cuerva
,
V. I.
,
Ackermann
,
M.
, and
Leonardi
,
F.
,
2022
, “
Performance of Impedance Control-Based Strategies in Power-Assisted Wheelchairs: A Predictive Simulation Study
,”
Front. Neurorobot.
,
16
, pp.
1
15
.10.3389/fnbot.2022.805835
14.
Cuerva
,
V. I.
,
Ackermann
,
M.
, and
Leonardi
,
F.
,
2017
, “
The Influence of Speed and Slope Angle on Wheelchair Propulsion Patterns: An Optimal Control Study
,”
5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics
, Sao Paulo, Brazil, pp.
1079
1084
.10.26678/ABCM.COBEM2017.COB17-1154
15.
Boninger
,
M. L.
,
Souza
,
A. L.
,
Cooper
,
R. A.
,
Fitzgerald
,
S. G.
,
Koontz
,
A. M.
, and
Fay
,
B. T.
,
2002
, “
Propulsion Patterns and Pushrim Biomechanics in Manual Wheelchair Propulsion
,”
Arch. Phys. Med. Rehabil.
,
83
(
5
), pp.
718
723
.10.1053/apmr.2002.32455
16.
Sauret
,
C.
,
Vaslin
,
P.
,
Lavaste
,
F.
,
de Saint Remy
,
N.
, and
Cid
,
M.
,
2013
, “
Effects of User's Actions on Rolling Resistance and Wheelchair Stability During Handrim Wheelchair Propulsion in the Field
,”
Med. Eng. Phys.
,
35
(
3
), pp.
289
297
.10.1016/j.medengphy.2012.05.001
17.
Eydieux, N., Hybois, S., Siegel, A., Bascou, J., Vaslin, P., Pillet, H., Fodé, P., and Sauret, C.
,
2019
, “
Changes in Wheelchair Biomechanics Within the First 120 Minutes of Practice: Spatiotemporal Parameters, Handrim Forces, Motor Force, Rolling Resistance and Fore-Aft Stability
,”
Disabil. Rehabil. Assist. Technol.
, 15(3), pp.
1
9
.10.1080/17483107.2019.1571117
18.
Schielen
,
W.
,
1997
, “
Multibody Dynamic Systems: Roots and Perspectives
,”
Multibody Syst. Dyn.
,
1
, pp.
149
188
.10.1023/A:1009745432698
19.
Bascou
,
J.
,
Sauret
,
C.
,
Pillet
,
H.
,
Vaslin
,
P.
,
Thoreux
,
P.
, and
Lavaste
,
F.
,
2013
, “
A Method for the Field Assessment of Rolling Resistance Properties of Manual Wheelchairs
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
4
), pp.
381
391
.10.1080/10255842.2011.623673
20.
Sauret
,
C.
,
Vaslin
,
P.
,
Bascou
,
J.
,
Pillet
,
H.
, and
Lavaste
,
F.
,
2013
, “
Proposal of an Index for Evaluating Pitch Instability During Actual Locomotion With a Manual Wheelchair
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
sup1
), pp.
130
131
.10.1080/10255842.2013.815952
21.
Koeneman
,
J.
,
Licitra
,
G.
,
Alp
,
M.
, and
Diehl
,
M.
,
2019
, “
OpenOCL - Open Optimal Control Library
,”
Robot. Sci. Syst.
https://www.researchgate.net/publication/333646261_OpenOCL_-_Open_Optimal_Control_Library
22.
Wächter
,
A.
, and
Biegler
,
L. T.
,
2006
, “
On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Program,
106, pp.
25
57
.10.1007/s10107-004-0559-y
23.
Andersson
,
J. A. E.
,
Gillis
,
J.
,
Horn
,
G.
,
Rawlings
,
J. B.
, and
Diehl
,
M.
,
2019
, “
CasADi: A Software Framework for Nonlinear Optimization and Optimal Control
,”
Math. Program. Comput.
,
11
(
1
), pp.
1
36
.10.1007/s12532-018-0139-4
24.
Winter
,
D. A.
, “
Anthropometry
,”
Biomechanics and Motor Control of Human Movement
, 4th ed., Wiley, Hoboken, NJ, pp.
82
106
.
25.
Sauret
,
C.
,
Bascou
,
J.
,
Rmy
,
N. D S.
,
Pillet
,
H.
,
Vaslin
,
P.
, and
Lavaste
,
F.
,
2012
, “
Assessment of Field Rolling Resistance of Manual Wheelchairs
,”
J. Rehabil. Res. Dev.
,
49
(
1
), pp.
63
74
.10.1682/JRRD.2011.03.0050
26.
Soltau
,
S. L.
,
Slowik
,
J. S.
,
Requejo
,
P. S.
,
Mulroy
,
S. J.
, and
Neptune
,
R. R.
,
2015
, “
An Investigation of Bilateral Symmetry During Manual Wheelchair Propulsion
,”
Front. Bioeng. Biotechnol.
,
3
, pp.
3
8
.10.3389/fbioe.2015.00086
27.
Rodgers
,
M. M.
,
Keyser
,
R. E.
,
Gardner
,
E. R.
,
Russell
,
P. J.
, and
Gorman
,
P. H.
,
2000
, “
Influence of Trunk Flexion on Biomechanics of Wheelchair Propulsion
,”
J. Rehabil. Res. Dev.,
37
(
3
), pp.
283
295
.https://pubmed.ncbi.nlm.nih.gov/10917260/
28.
Hybois
,
S.
,
Siegel
,
A.
,
Bascou
,
J.
,
Eydieux
,
N.
,
Vaslin
,
P.
,
Pillet
,
H.
,
Fodé
,
P.
, and
Sauret
,
C.
,
2018
, “
Shoulder Kinetics During Start-Up and Propulsion With a Manual Wheelchair Within the Initial Phase of Uninstructed Training
,”
Disabil. Rehabil. Assist. Technol.
,
13
(
1
), pp.
40
46
.10.1080/17483107.2016.1278471
29.
Laschowski
,
B.
,
Mehrabi
,
N.
, and
McPhee
,
J.
,
2018
, “
Optimization-Based Motor Control of a Paralympic Wheelchair Athlete
,”
Sport. Eng.
,
21
(
3
), pp.
207
215
.10.1007/s12283-018-0265-2
30.
Wieczorek
,
B.
, and
Kukla
,
M.
,
2019
, “
Effects of the Performance Parameters of a Wheelchair on the Changes in the Position of the Centre of Gravity of the Human Body in Dynamic Condition
,”
PLoS One
,
14
(
12
), p.
e0226013
.10.1371/journal.pone.0226013
31.
Inkol
,
K. A.
,
Brown
,
C.
,
McNally
,
W.
,
Jansen
,
C.
, and
McPhee
,
J.
,
2020
, “
Muscle Torque Generators in Multibody Dynamic Simulations of Optimal Sports Performance
,”
Multibody Syst. Dyn.
,
50
(
4
), pp.
435
452
.10.1007/s11044-020-09747-9
You do not currently have access to this content.