Abstract

Nanoparticle drug delivery better targets neoplastic lesions than free drugs and thus has emerged as a safer form of cancer therapy. Nanoparticle design variables are important determinants of efficacy as they influence the drug biodistribution and pharmacokinetics. Previously, we determined optimal designs through mechanistic modeling and optimization. However, the numerical nature of the tumor model and numerous candidate nanoparticle designs hinder hypothesis generation and treatment personalization. In this paper, we utilize the parallel coordinates technique to visualize high-dimensional optimal solutions and extract correlations between nanoparticle design and treatment outcomes. We found that at optimality, two major design variables are dependent, and thus the optimization problem can be reduced. In addition, we obtained an analytical relationship between optimal nanoparticle sizes and optimal distribution, which could facilitate the utilization of tumors models in preclinical studies. Our approach has simplified the results of the previously integrated modeling and optimization framework developed for nanotherapy and enhanced the interpretation and utilization of findings. Integrated mathematical frameworks are increasing in the medical field, and our method can be applied outside nanotherapy to facilitate the clinical translation of computational methods.

References

1.
Zhang
,
R. X.
,
Ahmed
,
T.
,
Li
,
L. Y.
,
Li
,
J.
,
Abbasi
,
A. Z.
, and
Wu
,
X. Y.
,
2017
, “
Design of Nanocarriers for Nanoscale Drug Delivery to Enhance Cancer Treatment Using Hybrid Polymer and Lipid Building Blocks
,”
Nanoscale
,
9
(
4
), pp.
1334
1355
.10.1039/C6NR08486A
2.
Clemons
,
T. D.
,
Singh
,
R.
,
Sorolla
,
A.
,
Chaudhari
,
N.
,
Hubbard
,
A.
, and
Iyer
,
K. S.
,
2018
, “
Distinction Between Active and Passive Targeting of Nanoparticles Dictate Their Overall Therapeutic Efficacy
,”
Langmuir
,
34
(
50
), pp.
15343
15349
.10.1021/acs.langmuir.8b02946
3.
Barenholz
,
Y. C.
,
2012
, “
Doxil®—The First FDA-Approved Nano-Drug: Lessons Learned
,”
J. Controlled Release
,
160
(
2
), pp.
117
134
.10.1016/j.jconrel.2012.03.020
4.
Gabizon
,
A.
,
Shmeeda
,
H.
, and
Barenholz
,
Y.
,
2003
, “
Pharmacokinetics of Pegylated Liposomal Doxorubicin
,”
Clin. Pharmacokin.
,
42
(
5
), pp.
419
436
.10.2165/00003088-200342050-00002
5.
Hare
,
J. I.
,
Lammers
,
T.
,
Ashford
,
M. B.
,
Puri
,
S.
,
Storm
,
G.
, and
Barry
,
S. T.
,
2017
, “
Challenges and Strategies in Anti-Cancer Nanomedicine Development: An Industry Perspective
,”
Adv. Drug Deliver Rev.
,
108
, pp.
25
38
.10.1016/j.addr.2016.04.025
6.
Zamboni
,
W. C.
,
Torchilin
,
V.
,
Patri
,
A. K.
,
Hrkach
,
J.
,
Stern
,
S.
,
Lee
,
R.
,
Nel
,
A.
,
Panaro
,
N. J.
, and
Grodzinski
,
P.
,
2012
, “
Best Practices in Cancer Nanotechnology: Perspective From Nci Nanotechnology Alliance
,”
Clin. Cancer Res.
,
18
(
12
), pp.
3229
3241
.10.1158/1078-0432.CCR-11-2938
7.
De Jong
,
W. H.
,
Hagens
,
W. I.
,
Krystek
,
P.
,
Burger
,
M. C.
,
Sips
,
A. J.
, and
Geertsma
,
R. E.
,
2008
, “
Particle Size-Dependent Organ Distribution of Gold Nanoparticles After Intravenous Administration
,”
Biomaterials
,
29
(
12
), pp.
1912
1919
.10.1016/j.biomaterials.2007.12.037
8.
Decuzzi
,
P.
, and
Ferrari
,
M.
,
2006
, “
The Adhesive Strength of Non-Spherical Particles Mediated by Specific Interactions
,”
Biomaterials
,
27
(
30
), pp.
5307
14
.10.1016/j.biomaterials.2006.05.024
9.
van de Ven
,
A. L.
,
Wu
,
M.
,
Lowengrub
,
J.
,
McDougall
,
S. R.
,
Chaplain
,
M. A.
,
Cristini
,
V.
,
Ferrari
,
M.
, and
Frieboes
,
H. B.
,
2012
, “
Integrated Intravital Microscopy and Mathematical Modeling to Optimize Nanotherapeutics Delivery to Tumors
,”
AIP Adv.
,
2
(
1
), p.
11208
.10.1063/1.3699060
10.
Frieboes
,
H. B.
,
Wu
,
M.
,
Lowengrub
,
J.
,
Decuzzi
,
P.
, and
Cristini
,
V.
,
2013
, “
A Computational Model for Predicting Nanoparticle Accumulation in Tumor Vasculature
,”
PLoS One
,
8
(
2
), p.
e56876
.10.1371/journal.pone.0056876
11.
England
,
C.
,
Ng
,
C.
,
Berkel
,
V.
, and
Frieboes
,
H.
,
2015
, “
A Review of Pharmacological Treatment Options for Lung Cancer: Emphasis on Novel Nanotherapeutics and Associated Toxicity
,”
Curr. Drug Targets
,
16
(
10
), pp.
1057
1087
.10.2174/1389450116666150505122109
12.
Curtis
,
L. T.
,
Wu
,
M.
,
Lowengrub
,
J.
,
Decuzzi
,
P.
, and
Frieboes
,
H. B.
,
2015
, “
Computational Modeling of Tumor Response to Drug Release From Vasculature-Bound Nanoparticles
,”
PLoS One
,
10
(
12
), p.
e0144888
.10.1371/journal.pone.0144888
13.
Curtis
,
L. T.
, and
Frieboes
,
H. B.
,
2016
,
The Tumor Microenvironment as a Barrier to Cancer Nanotherapy
,
Springer International Publishing
,
Cham, Switzerland
, pp.
165
190
.
14.
Sims
,
L. B.
,
Huss
,
M. K.
,
Frieboes
,
H. B.
, and
Steinbach-Rankins
,
J. M.
,
2017
, “
Distribution of PLGA-Modified Nanoparticles in 3D Cell Culture Models of Hypo-Vascularized Tumor Tissue
,”
J. Nanobiotechnol.
,
15
(
1
), p.
67
.10.1186/s12951-017-0298-x
15.
Chamseddine
,
I. M.
, and
Kokkolaras
,
M.
,
2018
, “
Nanoparticle Optimization for Enhanced Targeted Anticancer Drug Delivery
,”
ASME J. Biomech. Eng.
,
140
(
4
), p.
041002
.10.1115/1.4038202
16.
Chamseddine
,
I. M.
,
Frieboes
,
H. B.
, and
Kokkolaras
,
M.
,
2018
, “
Design Optimization of Tumor Vasculature-Bound Nanoparticles
,”
Sci. Rep.
,
8
(
1
), p.
17768
.10.1038/s41598-018-35675-y
17.
Chamseddine
,
I. M.
,
Frieboes
,
H. B.
, and
Kokkolaras
,
M.
,
2020
, “
Multi-Objective Optimization of Tumor Response to Drug Release From Vasculature-Bound Nanoparticles
,”
Sci. Rep.
,
10
(
1
), p.
8294
.10.1038/s41598-020-65162-2
18.
Chamseddine
,
I. M.
, and
Kokkolaras
,
M.
,
2020
, “
A Dual Nanoparticle Delivery Strategy for Enhancing Drug Distribution in Cancerous Tissue
,”
ASME J. Biomech. Eng.
,
142
(
12
), p.
124501
.10.1115/1.4047657
19.
Navya
,
P. N.
,
Kaphle
,
A.
,
Srinivas
,
S. P.
,
Bhargava
,
S. K.
,
Rotello
,
V. M.
, and
Daima
,
H. K.
,
2019
, “
Current Trends and Challenges in Cancer Management and Therapy Using Designer Nanomaterials
,”
Nano Converg.
,
6
(
1
), Article No. 23.10.1186/s40580-019-0193-2
20.
Inselberg
,
A.
,
2009
,
Parallel Coordinates: Visual Multidimensional Geometry and Its Applications
,
Springer
,
New York
.
21.
Charoenphol
,
P.
,
Mocherla
,
S.
,
Bouis
,
D.
,
Namdee
,
K.
,
Pinsky
,
D. J.
, and
Eniola-Adefeso
,
O.
,
2011
, “
Targeting Therapeutics to the Vascular Wall in Atherosclerosis-Carrier Size Matters
,”
Atherosclerosis
,
217
(
2
), pp.
364
370
.10.1016/j.atherosclerosis.2011.04.016
22.
Patil
,
V. R. S.
,
Campbell
,
C. J.
,
Yun
,
Y. H.
,
Slack
,
S. M.
, and
Goetz
,
D. J.
,
2001
, “
Particle Diameter Influences Adhesion Under Flow
,”
Biophysics
,
80
(
4
), pp.
1733
1743
.10.1016/S0006-3495(01)76144-9
23.
Sen Gupta
,
A.
,
2016
, “
Role of Particle Size, Shape, and Stiffness in Design of Intravascular Drug Delivery Systems: Insights From Computations, Experiments, and Nature
,”
Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
,
8
(
2
), pp.
255
270
.10.1002/wnan.1362
24.
Audet
,
C.
, and
Dennis
,
J.
, Jr.
,
2006
, “
Mesh Adaptive Direct Search Algorithms for Constrained Optimization
,”
SIAM J. Optim.
,
17
(
1
), pp.
188
217
.10.1137/040603371
25.
Le Digabel
,
S.
,
2011
, “
Algorithm 909: Nomad: Nonlinear Optimization With the Mads Algorithm
,”
ACM Trans. Math. Software
,
37
(
4
), pp.
1
15
.10.1145/1916461.1916468
26.
Kipouros
,
T.
,
Inselberg
,
A.
,
Parks
,
G. T.
, and
Savill
,
A. M.
,
2013
, “
Parallel Coordinates in Computational Engineering Design
,”
AIAA
Paper No. 2013-1750.10.2514/6.2013-1750
27.
Piotrowski
,
W.
,
Kipouros
,
T.
, and
Clarkson
,
P. J.
,
2019
, “
Enhanced Interactive Parallel Coordinates Using Machine Learning and Uncertainty Propagation for Engineering Design
,”
International Conference on eScience
,
San Diego, CA, Sept. 24–27, pp.
339
348
.10.1109/eScience.2019.00045
28.
Chamseddine
,
I. M.
, and
Rejniak
,
K. A.
,
2020
, “
Hybrid Modeling Frameworks of Tumor Development and Treatment
,”
WIREs Syst. Biol. Med.
,
12
(
1
), p.
e1461
.10.1002/wsbm.1461
29.
Craft
,
D.
,
Halabi
,
T.
,
Shih
,
H. A.
, and
Bortfeld
,
T.
,
2007
, “
An Approach for Practical Multiobjective Imrt Treatment Planning
,”
Int. J. Radiat. Oncol., Biol., Phys.
,
69
(
5
), pp.
1600
1607
.10.1016/j.ijrobp.2007.08.019
30.
West
,
J.
,
You
,
L.
,
Zhang
,
J.
,
Gatenby
,
R. A.
,
Brown
,
J. S.
,
Newton
,
P. K.
, and
Anderson
,
A. R.
,
2020
, “
Towards Multidrug Adaptive Therapy
,”
Cancer Res.
,
80
(
7
), pp.
1578
1589
.10.1158/0008-5472.CAN-19-2669
31.
Leonard
,
F.
,
Curtis
,
L. T.
,
Hamed
,
A. R.
,
Zhang
,
C.
,
Chau
,
E.
,
Sieving
,
D.
,
Godin
,
B.
, and
Frieboes
,
H. B.
,
2020
, “
Nonlinear Response to Cancer Nanotherapy Due to Macrophage Interactions Revealed by Mathematical Modeling and Evaluated in a Murine Model Via Crispr-Modulated Macrophage Polarization
,”
Cancer Immunol.
,
69
(
5
), pp.
731
744
.10.1007/s00262-020-02504-z
32.
Topol
,
E.
,
2019
, “
The Topol Review: Preparing the Healthcare Workforce to Deliver the Digital Future
,” Review Report, Health Education England, Cambridge, UK, accessed May 10, 2021, https://topol.hee.nhs.uk/
33.
Tadeja
,
S.
,
Kipouros
,
T.
,
Lu
,
Y.
, and
Kristensson
,
P. O.
,
2021
, “
Supporting Decision Making in Engineering Design Using Parallel Coordinates in Virtual Reality
,”
AIAA J.
, pp.
1
15
.10.2514/1.J060441
You do not currently have access to this content.