Abstract

The inclusion of muscle pressure in muscle models may have important implications in biomechanics. This notion builds from the known correlation between muscle contractile force and internal pressure. However, this relation is often omitted in numerical models leveraged to study biomechanics. Thus, the purpose of this study was to develop and validate a method of modeling muscles, via finite elements, inclusive of the correlation between muscle contractile force and intramuscular pressure. A magnetic resonance imaging (MRI)-scanned tibialis anterior muscle was modeled via a simple, yet easily scalable, mixed shell and pressure finite element model. Then a validation study was conducted on intramuscular pressure, resulting from applied muscle contractile force, through leveraging special fluid elements type. The fluid–structure-based model and adopted methods exhibited muscle forces and intramuscular pressure that were highly linearly correlated. Indirect validation was achieved with a maximum discrepancy of 7.25%. Furthermore, force-length curves followed a trend similar to documented conventional muscle data, which added to the model's validity. Mesh, material properties, and tendon stiffness sensitivity studies supported the model's robustness. This study has introduced a novel three-dimensional finite element modeling method that respects the physiological force and intramuscular pressure relationship. Although similar models have been previously explored, their complex physiological representation and time-consuming solvers make their scalability and real-time implementation questionable. Thus, the developed model may address such limitations while improving the realism of volumetric finite element models inclusive of muscle contribution.

References

1.
Davis
,
J.
,
Kaufman
,
K. R.
, and
Lieber
,
R. L.
,
2003
, “
Correlation Between Active and Passive Isometric Force and Intramuscular Pressure in the Isolated Rabbit Tibialis Anterior Muscle
,”
J. Biomech.
,
36
(
4
), pp. 505–512.10.1016/S0021-9290(02)00430-X
2.
Wheatley
,
B. B.
,
Odegard
,
G. M.
,
Kaufman
,
K. R.
, and
Haut Donahue
,
T. L.
,
2018
, “
Modeling Skeletal Muscle Stress and Intramuscular Pressure: A Whole Muscle Active-Passive Approach
,”
ASME J. Biomech. Eng.
,
140
(
8
), p. 081006.10.1115/1.4040318
3.
Barry
,
D. T.
,
Gordon
,
K. E.
, and
Hinton
,
G. G.
,
1990
, “
Acoustic and Surface EMG Diagnosis of Pediatric Muscle Disease
,”
Muscle Nerve
,
13
(
4
), pp.
286
290
.10.1002/mus.880130403
4.
Speich
,
J. E.
,
Dosier
,
C.
,
Borgsmiller
,
L.
,
Quintero
,
K.
,
Koo
,
H. P.
, and
Ratz
,
P. H.
,
2007
, “
Adjustable Passive Length-Tension Curve in Rabbit Detrusor Smooth Muscle
,”
J. Appl. Physiol.
,
102
(
5
), pp. 1746–1755.10.1152/japplphysiol.00548.2006
5.
Sejersted
,
O. M.
, and
Hargens
,
A. R.
,
1995
, “
Intramuscular Pressures for Monitoring Different Tasks and Muscle Conditions
,”
Advances in Experimental Medicine and Biology
, Fatigue, Springer, Boston, MA, pp. 339–350.10.1007/978-1-4899-1016-5_27
6.
Evertz
,
L. Q.
,
Bulstra
,
L. F.
,
Shin
,
A. Y.
, and
Kaufman
,
K. R.
,
2017
, “
Evaluate Muscle Tension Using Intramuscular Pressure Device in Rabbit Tibialis Anterior Model for Improved Tendon Transfer Surgery
,”
Physiol. Meas.
,
38
(
7
), pp.
1301
1309
.10.1088/1361-6579/aa6739
7.
Winters
,
T. M.
,
Sepulveda
,
G. S.
,
Cottler
,
P. S.
,
Kaufman
,
K. R.
,
Lieber
,
R. L.
, and
Ward
,
S. R.
,
2009
, “
Correlation Between Isometric Force and Intramuscular Pressure in Rabbit Tibialis Anterior Muscle With an Intact Anterior Compartment
,”
Muscle Nerve
,
40
(
1
), pp. 79–85.10.1002/mus.21298
8.
Go
,
S. A.
,
Jensen
,
E. R.
,
Connor
,
S. M.
, O'
Evertz
,
L. Q.
,
Morrow
,
D. A.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Kaufman
,
K. R.
,
2017
, “
Design Considerations of a Fiber Optic Pressure Sensor Protective Housing for Intramuscular Pressure Measurements
,”
Ann. Biomed. Eng.
,
45
(
8
), pp. 739–746.10.1007/s10439-016-1703-6
9.
Ward
,
S. R.
,
Davis
,
J.
,
Kaufman
,
K. R.
, and
Lieber
,
R. L.
,
2007
, “
Relationship Between Muscle Stress and Intramuscular Pressure During Dynamic Muscle Contractions
,”
Muscle Nerve
,
36
(
3
), pp. 313–319.10.1002/mus.20828
10.
Daggfeldt
,
K.
,
2006
, “
Muscle Bulging Reduces Muscle Force and Limits the Maximal Effective Muscle Size
,”
J. Mech. Med. Biol.
,
06
(
03
), pp.
229
239
.10.1142/S0219519406001947
11.
Hargens
,
A. R.
,
Mubarak
,
S. J.
,
Owen
,
C. A.
,
Garetto
,
L. P.
, and
Akeson
,
W. H.
,
1977
, “
Interstitial Fluid Pressure in Muscle and Compartment Syndromes in Man
,”
Microvasc. Res.
,
14
(
1
), pp.
1
10
.10.1016/0026-2862(77)90136-4
12.
Matsen
,
F. A.
,
Mayo
,
K. A.
,
Sheridan
,
G. W.
, and
Krugmire
,
R. B.
,
1976
, “
Monitoring of Intramuscular Pressure
,”
Surgery
,
79
(
6
), pp. 702–709.https://pubmed.ncbi.nlm.nih.gov/1273755/
13.
Hargens
,
A. R.
,
Akeson
,
W. H.
,
Mubarak
,
S. J.
,
Owen
,
C. A.
,
Gershuni
,
D. H.
,
Garfin
,
S. R.
,
Lieber
,
R. L.
,
Danzig
,
L. A.
,
Botte
,
M. J.
, and
Gelberman
,
R. H.
,
1989
, “
Tissue Fluid Pressures: From Basic Research Tools to Clinical Applications
,”
J. Orthop. Res.
,
7
(
6
), pp.
902
909
.10.1002/jor.1100070617
14.
Smith
,
D. A.
,
1990
, “
The Theory of Sliding Filament Models for Muscle Contraction. III. Dynamics of the Five-State Model
,”
J. Theor. Biol.
,
146
(
4
), pp. 433–466.10.1016/s0022-5193(05)80372-8
15.
Röhrle
,
O.
,
Davidson
,
J. B.
, and
Pullan
,
A. J.
,
2012
, “
A Physiologically Based, Multi-Scale Model of Skeletal Muscle Structure and Function
,”
Front. Physiol.
, Article No. 358.10.3389/fphys.2012.00358
16.
Hodgkin
,
A. L.
, and
Huxley
,
A. F.
,
1952
, “
A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve
,”
J. Physiol.
,
117
(
4
), pp. 500–544.10.1113/jphysiol.1952.sp004764
17.
Huxley
,
A. F.
,
1957
, “
Muscle Structure and Theories of Contraction
,”
Prog. Biophys. Biophys. Chem.
, 7, 255–318.https://pubmed.ncbi.nlm.nih.gov/13485191/
18.
Hill
,
A. V.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. B Biol. Sci.
,
126
(
843
), pp.
136
195
.10.1098/rspb.1938.0050
19.
Winters
,
J. M.
, and
Stark
,
L.
,
1987
, “
Muscle Models: What is Gained and What is Lost by Varying Model Complexity
,”
Biol. Cybern.
,
55
(
6
), pp.
403
420
.10.1007/BF00318375
20.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
,
1990
, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
,
37
(
8
), pp.
757
767
.10.1109/10.102791
21.
Chao
,
E. Y. S.
,
Lynch
,
J. D.
, and
Vanderploeg
,
M. J.
,
1993
, “
Simulation and Animation of Musculoskeletal Joint System
,”
ASME J. Biomech. Eng.
,
115
(
4B
), pp.
562
568
.10.1115/1.2895541
22.
Semwal
,
S. K.
, and
Hallauer
,
J. J.
,
1994
, “
Biomechanical Modeling: Implementing Line-of-Action Algorithm for Human Muscles and Bones Using Generalized Cylinders
,”
Comput. Graph.
,
18
(
1
), pp. 105–112.https://www.semanticscholar.org/paper/Biomechanical-modeling%3A-Implementing-line-ofaction-Semwal-Hallauer/b4681c234e7d76db6abe97a5d2523fcc8de258a0
23.
Nussbaum
,
M. A.
,
Chaffin
,
D. B.
, and
Rechtien
,
C. J.
,
1995
, “
Muscle Lines-of-Action Affect Predicted Forces in Optimization-Based Spine Muscle Modeling
,”
J. Biomech.
,
28
(
4
), pp. 401–409.10.1016/0021-9290(94)00078-i
24.
Gatton
,
M.
,
Pearcy
,
M.
, and
Pettet
,
G.
,
2001
, “
Modelling the Line of Action for the Oblique Abdominal Muscles Using an Elliptical Torso Model
,”
J. Biomech.
,
34
(
9
), pp.
1203
1207
.10.1016/s0021-9290(01)00079-3
25.
Pandy
,
M. G.
,
2001
, “
Computer Modeling and Simulation of Human Movement
,”
Annu. Rev. Biomed. Eng.
,
3
(
1
), pp.
245
273
.10.1146/annurev.bioeng.3.1.245
26.
Dong
,
F.
,
Clapworthy
,
G. J.
,
Krokos
,
M. A.
, and
Yao
,
J.
,
2002
, “
An Anatomy-Based Approach to Human Muscle Modeling and Deformation
,”
IEEE Trans. Vis. Comput. Graph.
,
8
(
2
), pp. 154–170.10.1109/2945.998668
27.
Johansson
,
T.
,
Meier
,
P.
, and
Blickhan
,
R.
,
2000
, “
A Finite-Element Model for the Mechanical Analysis of Skeletal Muscles
,”
J. Theor. Biol.
,
206
(
1
), pp. 131–149.10.1006/jtbi.2000.2109
28.
Oomens
,
C. W. J.
,
Maenhout
,
M.
,
Van Oijen
,
C. H.
,
Drost
,
M. R.
, and
Baaijens
,
F. P.
,
2003
, “
Finite Element Modelling of Contracting Skeletal Muscle
,”
Philos. Trans. R. Soc. B Biol. Sci.
,
358
(
1437
), pp. 1453–1460.10.1098/rstb.2003.1345
29.
Blemker
,
S. S.
,
Pinsky
,
P. M.
, and
Delp
,
S. L.
,
2005
, “
A 3D Model of Muscle Reveals the Causes of Nonuniform Strains in the Biceps Brachii
,”
J. Biomech.
,
38
(
4
), pp.
657
665
.10.1016/j.jbiomech.2004.04.009
30.
Lemos
,
R. R.
,
Rokne
,
J.
,
Baranoski
,
G. V. G.
,
Kawakami
,
Y.
, and
Kurihara
,
T.
,
2005
, “
Modeling and Simulating the Deformation of Human Skeletal Muscle Based on Anatomy and Physiology
,”
Computer Animation and Virtual Worlds
, 16(3–4), pp. 319–330.10.1002/cav.83
31.
Röhrle
,
O.
, and
Pullan
,
A. J.
,
2007
, “
Three-Dimensional Finite Element Modelling of Muscle Forces During Mastication
,”
J. Biomech.
,
40
(
15
), pp. 3363–3372.10.1016/j.jbiomech.2007.05.011
32.
Böl
,
M.
, and
Reese
,
S.
,
2008
, “
Micromechanical Modelling of Skeletal Muscles Based on the Finite Element Method
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
5
), pp.
489
504
.10.1080/10255840701771750
33.
Blemker
,
S. S.
, and
Delp
,
S. L.
,
2005
, “
Three-Dimensional Representation of Complex Muscle Architectures and Geometries
,”
Ann. Biomed. Eng.
,
33
(
5
), pp.
661
673
.10.1007/s10439-005-1433-7
34.
Röhrle
,
O.
,
Davidson
,
J. B.
, and
Pullan
,
A. J.
,
2008
, “
Bridging Scales: A Three-Dimensional Electromechanical Finite Element Model of Skeletal Muscle
,”
SIAM J. Sci. Comput.
,
30
(
6
), pp.
2882
2904
.10.1137/070691504
35.
Böl
,
M.
,
Kruse
,
R.
,
Ehret
,
A. E.
,
Leichsenring
,
K.
, and
Siebert
,
T.
,
2012
, “
Compressive Properties of Passive Skeletal muscle-The Impact of Precise Sample Geometry on Parameter Identification in Inverse Finite Element Analysis
,”
J. Biomech.
,
45
(
15
), pp. 2673–2679.10.1016/j.jbiomech.2012.08.023
36.
Siebert
,
T.
,
Till
,
O.
, and
Blickhan
,
R.
,
2014
, “
Work Partitioning of Transversally Loaded Muscle: Experimentation and Simulation
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
3
), pp. 217–229.10.1080/10255842.2012.675056
37.
Jenkyn
,
T. R.
,
Koopman
,
B.
,
Huijing
,
P.
,
Lieber
,
R. L.
, and
Kaufman
,
K. R.
,
2002
, “
Finite Element Model of Intramuscular Pressure During Isometric Contraction of Skeletal Muscle
,”
Phys. Med. Biol.
,
47
(
22
), pp.
4043
4061
.10.1088/0031-9155/47/22/309
38.
Wheatley
,
B. B.
,
Odegard
,
G. M.
,
Kaufman
,
K. R.
, and
Haut Donahue
,
T. L.
,
2017
, “
A Validated Model of Passive Skeletal Muscle to Predict Force and Intramuscular Pressure
,”
Biomech. Model. Mechanobiol.
,
16
(
3
), pp. 1011–1022.10.1007/s10237-016-0869-z
39.
Chi
,
H.
,
Talischi
,
C.
,
Lopez-Pamies
,
O.
, and
Paulino
,
H. G.
,
2015
, “
Polygonal Finite Elements for Finite Elasticity
,”
Int. J. Numer. Methods Eng.
,
101
(
4
), pp. 305–328.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.691.1565&rep=rep1&type=pdf
40.
Sanders Jr, J. L.,
1959
, “
An Improved First-Approximation Theory for Thin Shells
,” NASA Rep., 24, pp. 1–11.
41.
Herrmann
,
L. R.
,
1965
, “
Elasticity Equations for Incompressible and Nearly Incompressible Materials by a Variational Theorem
,”
AIAA J.
,
3
(
10
), pp. 1896–1900.10.2514/3.3277
42.
Atluri
,
S. N.
, and
Reissner
,
E.
,
1989
, “
On the Formulation of Variational Theorems Involving Volume Constraints
,”
Comput. Mech.
,
5
(
5
), pp. 337–344.10.1007/BF01047050
43.
Lieber
,
R. L.
, and
Blevins
,
F. T.
,
1989
, “
Skeletal Muscle Architecture of the Rabbit Hindlimb: Functional Implications of Muscle Design
,”
J. Morphol.
,
199
(
1
), pp.
93
101
.10.1002/jmor.1051990108
44.
Nishimura
,
T.
,
Hattori
,
A.
, and
Takahashi
,
K.
,
1994
, “
Ultrastructure of the Intramuscular Connective Tissue in Bovine Skeletal Muscle
,”
Cells Tissues Organs
,
151
(
4
), pp.
250
257
.10.1159/000147671
45.
Metan
,
S.
,
Mohankumar
,
G. C.
, and
Krishna
,
P.
,
2016
, “
FEM an Effective Tool to Analyse the Knee Joint Muscles During Flexion
,”
Am. J. Biomed. Eng.
,
1
(
1
), pp. 4–23.10.5923/j.ajbe.20160602.01
46.
Behfar
,
M.
,
Sarrafzadeh-Rezaei
,
F.
,
Hobbenaghi
,
R.
,
Delirezh
,
N.
, and
Dalir-Naghadeh
,
B.
,
2012
, “
Enhanced Mechanical Properties of Rabbit Flexor Tendons in Response to Intratendinous Injection of Adipose Derived Stromal Vascular Fraction
,”
Curr. Stem Cell Res. Ther.
,
7
(
3
), pp. 173–178.10.2174/157488812799859874
47.
Degens
,
H.
,
Salmons
,
S.
, and
Jarvis
,
J. C.
,
1998
, “
Intramuscular Pressure, Force and Blood Flow in Rabbit Tibialis Anterior Muscles During Single and Repetitive Contractions
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
78
(
1
), pp. 13–19.10.1007/s004210050381
48.
French, M. J., and Widden, M. B., 1995, “Stresses in Thick-Walled Cylinders: A Simple and Insightful Treatment,”
Int. J. Mech. Eng. Edu.
, 23(3), pp. 237–244. 10.1177/030641909502300308
49.
Sadamoto
,
T.
,
Bonde-Petersen
,
F.
, and
Suzuki
,
Y.
,
1983
, “
Skeletal Muscle Tension, Flow, Pressure, and EMG During Sustained Isometric Contractions in Humans
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
51
(
3
), pp.
395
408
.10.1007/BF00429076
50.
Sejersted
,
O. M.
,
Hargens
,
A. R.
,
Kardel
,
K. R.
,
Blom
,
P.
,
Jensen
,
O.
, and
Hermansen
,
L.
,
1984
, “
Intramuscular Fluid Pressure During Isometric Contraction of Human Skeletal Muscle
,”
J. Appl. Physiol. Respir. Environ. Exer. Physiol.
,
56
(
2
), pp.
287
295
.10.1152/jappl.1984.56.2.287
51.
Aratow
,
M.
,
Ballard
,
R. E.
,
Crenshaw
,
A. G.
,
Styf
,
J.
,
Watenpaugh
,
D. E.
,
Kahan
,
N. J.
, and
Hargens
,
A. R.
,
1993
, “
Intramuscular Pressure and Electromyography as Indexes of Force During Isokinetic Exercise
,”
J. Appl. Physiol.
,
74
(
6
), pp.
2634
2640
.10.1152/jappl.1993.74.6.2634
52.
Ballard
,
R. E.
,
Watenpaugh
,
D. E.
,
Breit
,
G. A.
,
Murthy
,
G.
,
Holley
,
D. C.
, and
Hargens
,
A. R.
,
1998
, “
Leg Intramuscular Pressures During Locomotion in Humans
,”
J. Appl. Physiol.
,
84
(
6
), pp.
1976
1981
.10.1152/jappl.1998.84.6.1976
53.
Bojairami
,
I. E.
,
El-Monajjed
,
K.
, and
Driscoll
,
M.
,
2020
, “
Development and Validation of a Timely and Representative Finite Element Human Spine Model for Biomechanical Simulations
,”
Sci. Rep.
,
10
(
1
), pp. 1–15.10.1038/s41598-020-77469-1
You do not currently have access to this content.