Abstract

Anomalous aortic origin of a coronary artery (AAOCA) is the second most common cause of sudden cardiac death in young athletes. One of the hypothesized mechanisms of ischemia in these patients is the lateral compression of the anomalous artery with an intramural or interarterial course. The presence of a narrowing in the anomalous artery will cause physiologic changes in downstream resistance that should be included for computational assessment of possible clinical ramifications. In this study, we created different compression levels, i.e., proximal narrowing, in the intramural course of a representative patient model and calculated hyperemic stenosis resistance (HSR) as well as virtual fractional flow reserve (vFFR). Models also included the effect of the distal hyperemic microvascular resistance (HMR) on vFFR. Our results agreed with similar FFR studies indicating that FFR is increased with increasing HMR and that different compression levels could have similar FFR depending on the HMR. For example, vFFR at HSR: 1.0–1.3 and HMR: 2.30 mmHg/cm/s is 0.68 and close to vFFR at HSR: 0.6–0.7 and HMR: 1.6 mmHg/cm/s, which is 0.7. The current findings suggest that functional assessment of anomalous coronary arteries through FFR should consider the vascular resistance distal to the narrowing in addition to the impact of a proximal narrowing and provides computational approaches for implementation of these important considerations.

References

1.
Agrawal
,
H.
,
Mery
,
C. M.
,
Day
,
P. E.
,
Sexson-Tejtel
,
S. K.
,
McKenzie
,
E. D.
,
Fraser
,
C. D.
, Jr
,
Qureshi
,
A. M.
, and
Molossi
,
S.
,
2017
, “
Current Practices Are Variable in the Evaluation and Management of Patients With Anomalous Aortic Origin of a Coronary Artery: Results of a Survey
,”
Congenit. Heart Dis
,
12
(
5
), pp.
610
614
.10.1111/chd.12511
2.
Saul
,
P.
, and
Gajewski
,
K.
,
2010
, “
Sudden Cardiac Death in Children and Adolescents (Excluding Sudden Infant Death Syndrome
,”
Ann. Pediatr. Cardiol.
, 3(2), pp.
107
112
.10.4103/0974-2069.74035
3.
Molossi
,
S.
,
Martínez-Bravo
,
L. E.
, and
Mery
,
C. M.
,
2019
, “
Anomalous Aortic Origin of a Coronary Artery
,”
Methodist Debakey Cardiovasc. J
,
15
(
2
), pp.
111
121
.10.14797/mdcj-15-2-111
4.
Gräni
,
C.
,
Kaufmann
,
P. A.
,
Windecker
,
S.
, and
Buechel
,
R. R.
,
2019
, “
Diagnosis and Management of Anomalous Coronary Arteries With a Malignant Course
,”
Interv. Cardiol. Rev.
,
14
(
2
), pp.
83
88
.10.15420/icr.2019.1.1
5.
Tonino
,
P. A. L.
,
Bruyne
,
B. D.
,
Pijls
,
N. H. J.
,
Siebert
,
U.
,
Ikeno
,
F.
,
van' T Veer
,
M.
,
Klauss
,
V.
,
Manoharan
,
G.
,
Engstrøm
,
T.
,
Oldroyd
,
K. G.
,
Ver Lee
,
P. N.
,
MacCarthy
,
P. A.
, and
Fearon
,
W. F.
,
FAME Study Investigators,
2009
, “
Fractional Flow Reserve Versus Angiography for Guiding Percutaneous Coronary Intervention
,”
Rev. Port. Cardiol.
, 360, pp.
213
224
.10.1056/NEJMoa0807611
6.
Zimmermann
,
F. M.
,
De Bruyne
,
B.
,
Pijls
,
N. H. J.
,
Desai
,
M.
,
Oldroyd
,
K. G.
,
Park
,
S. J.
,
Reardon
,
M. J.
,
Wendler
,
O.
,
Woo
,
J.
,
Yeung
,
A. C.
, and
Fearon
,
W. F.
,
2015
, “
Rationale and Design of the Fractional Flow Reserve Versus Angiography for Multivessel Evaluation (FAME) 3 Trial: A Comparison of Fractional Flow Reserve-Guided Percutaneous Coronary Intervention and Coronary Artery Bypass Graft Surgery in Patients With Multivessel Evaluation (FAME) study
,”
Am. Heart J.
,
170
(4), pp.
619
626.e2
.10.1016/j.ahj.2015.06.024
7.
Katritsis
,
D.
, and
Pantos
,
I.
,
2014
, “
Fractional Flow Reserve Derived From Coronary Imaging and Computational Fluid Dynamics
,”
Interv. Cardiol. Rev
,
9
(
3
), pp.
145
150
.10.15420/icr.2014.9.3.145
8.
Echavarría-Pinto
,
M.
,
van de Hoef
,
T. P.
,
van Lavieren
,
M. A.
,
Nijjer
,
S.
,
Ibañez
,
B.
,
Pocock
,
S.
,
Quirós
,
A.
,
Davies
,
J.
,
Meuwissen
,
M.
,
Serruys
,
P. W.
,
Macaya
,
C.
,
Piek
,
J. J.
, and
Escaned
,
J.
,
2015
, “
Combining Baseline Distal-to-Aortic Pressure Ratio and Fractional Flow Reserve in the Assessment of Coronary Stenosis Severity
,”
JACC Cardiovasc. Interv.
,
8
(
13
), pp.
1681
1691
.10.1016/j.jcin.2015.09.002
9.
Bressi
,
E.
,
Mangiacapra
,
F.
,
Morisco
,
C.
,
Barbato
,
E.
, and
Sticchi
,
A.
,
2018
, “
Fractional Flow Reserve (FFR) as a Guide to Treat Coronary Artery Disease
,”
Expert Rev. Cardiovasc. Ther.
,
16
(
7
), pp.
465
477
.10.1080/14779072.2018.1489236
10.
Agrawal
,
H.
,
Molossi
,
S.
,
Alam
,
M.
,
Sexson-Tejtel
,
S. K.
,
Mery
,
C. M.
,
McKenzie
,
E. D.
,
Fraser
,
C. D.
, Jr.
, and
Qureshi
,
A. M.
,
2017
, “
Anomalous Coronary Arteries and Myocardial Bridges: Risk Stratification in Children Using Novel Cardiac Catheterization Techniques
,”
Pediatr. Cardiol.
,
38
(
3
), pp.
624
630
.10.1007/s00246-016-1559-4
11.
Lim
,
J. C. E.
,
Beale
,
A.
, and
Ramcharitar
,
S.
,
2011
, “
Anomalous Origination of a Coronary Artery From the Opposite Sinus
,”
Nat. Rev. Cardiol.
,
8
(
12
), pp.
706
719
.10.1038/nrcardio.2011.147
12.
Lee
,
S. E.
,
Yu
,
C. W.
,
Park
,
K.
,
Park
,
K. W.
,
Suh
,
J. W.
,
Cho
,
Y. S.
,
Youn
,
T. J.
,
Chae
,
I. H.
,
Choi
,
D. J.
,
Jang
,
H. J.
,
Park
,
J. S. h.
,
Na
,
S. H.
,
Kim
,
H. S.
,
Kim
,
K. B.
, and
Koo
,
B. K.
,
2016
, “
Physiological and Clinical Relevance of Anomalous Right Coronary Artery Originating From Left Sinus of Valsalva in Adults
,”
Heart
,
102
(
2
), pp.
114
119
.10.1136/heartjnl-2015-308488
13.
Angelini
,
P.
,
Uribe
,
C.
,
Monge
,
J.
,
Tobis
,
J. M.
,
Elayda
,
M. A.
, and
Willerson
,
J. T.
,
2015
, “
Origin of the Right Coronary Artery From the Opposite Sinus of Valsalva in Adults: Characterization by Intravascular Ultrasonography at Baseline and After Stent Angioplasty
,”
Catheter. Cardiovasc. Interv.
,
86
(
2
), pp.
199
208
.10.1002/ccd.26069
14.
Boler
,
A. N.
,
Hilliard
,
A. A.
, and
Gordon
,
B. M.
,
2017
, “
Functional Assessment of Anomalous Right Coronary Artery Using Fractional Flow Reserve: An Innovative Modality to Guide Patient Management
,”
Catheter. Cardiovasc. Interv.
,
89
(
2
), pp.
316
320
.10.1002/ccd.26660
15.
Sambuceti
,
G.
,
Marzilli
,
M.
,
Fedele
,
S.
,
Marini
,
C.
, and
Abbate
,
A. L.
,
2001
, “
Paradoxical Increase in Microvascular Resistance During Tachycardia Downstream From a Severe Stenosis in Patients With Coronary Artery Disease: Reversal by Angioplasty
,”
World Wide Web Internet Web Inf. Syst.
,
103
(
19
), pp.
2352
2360
.10.1161/01.CIR.103.19.2352
16.
Guarini
,
G.
,
Capozza
,
P. G.
,
Huqi
,
A.
,
Morrone
,
D.
,
Chilian
,
W. M.
, and
Marzilli
,
M.
,
2013
, “
Microvascular Function/Dysfunction Downstream a Coronary Stenosis
,”
Curr. Pharm. Des
,
19
(
13
), pp.
2366
–23
74
.10.2174/1381612811319130004
17.
Van De Hoef
,
T. P.
,
Nolte
,
F.
,
EchavarrÍa-Pinto
,
M.
,
van Lavieren
,
M. A.
,
Damman
,
P.
,
Chamuleau
,
S. A. J.
,
Voskuil
,
M.
,
Verberne
,
H. J.
,
Henriques
,
J. P. S.
,
van Eck-Smit
,
B. L. F.
,
Koch
,
K. T.
,
de Winter
,
R. J.
,
Spaan
,
J. A. E.
,
Siebes
,
M.
,
Tijssen
,
J. G. P.
,
Meuwissen
,
M.
, and
Piek
,
J. J.
,
2014
, “
Impact of Hyperaemic Microvascular Resistance on Fractional Flow Reserve Measurements in Patients With Stable Coronary Artery Disease: Insights From Combined Stenosis and Microvascular Resistance Assessment
,”
Heart
,
100
(
12
), pp.
951
959
.10.1136/heartjnl-2013-305124
18.
Garcia
,
D.
,
Harbaoui
,
B.
,
van de Hoef
,
T. P.
,
Meuwissen
,
M.
,
Nijjer
,
S. S.
,
Echavarria-Pinto
,
M.
,
Davies
,
J. E.
,
Piek
,
J. J.
, and
Lantelme
,
P.
,
2019
, “
Relationship Between FFR, CFR and Coronary Microvascular Resistance—Practical Implications for FFR-Guided Percutaneous Coronary Intervention
,”
PLoS One
,
14
(
1
), p.
e0208612
.10.1371/journal.pone.0208612
19.
Gupta
,
A.
,
Kumar
,
V.
,
Gupta
,
R.
, and
Samarany
,
S.
,
2019
, “
A Case of Anomalous Origin of the Right Coronary Artery From the Left Sinus of Valsalva With a Malignant Course
,”
Cureus
,
11
(
9
), p. e5794.10.7759/cureus.5794
20.
Razavi
,
A.
,
Sachdeva
,
S.
,
Frommelt
,
P. C.
, and
LaDisa
,
J. F.
, Jr
,
2021
, “
Patient-Specific Numerical Analysis of Coronary Flow in Children With Intramural Anomalous Aortic Origin of Coronary Arteries
,”
Semin. Thorac. Cardiovasc. Surg.
,
33
(
1
), pp.
155
167
.10.1053/j.semtcvs.2020.08.016
21.
Vignon-Clementel
,
I. E.
,
Alberto Figueroa
,
C.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2006
, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
, 195(29–32), pp.
3776
3796
.10.1016/j.cma.2005.04.014
22.
Noto
,
N.
,
Ayusawa
,
M.
,
Karasawa
,
K.
,
Yamaguchi
,
H.
,
Sumitomo
,
N.
,
Okada
,
T.
, and
Harada
,
K.
,
1996
, “
Dobutamine Stress Echocardiography for Detection of Coronary Artery Stenosis in Children With Kawasaki Disease
,”
J. Am. Coll. Cardiol
,
27
(
5
), pp.
1251
1256
.10.1016/0735-1097(95)00570-6
23.
Nagaoka
,
H.
,
Isobe
,
N.
,
Kubota
,
S.
,
Lizuka
,
T.
,
Imai
,
S.
,
Suzuki
,
T.
, and
Nagai
,
R.
,
1997
, “
Comparison of Adenosine, Dobutamine, and Exercise Radionuclide Ventriculography in the Detection of Coronary Artery Disease
,”
Cardiology
,
88
(
2
), pp.
180
188
.10.1159/000177327
24.
Ellwein
,
L.
,
Samyn
,
M. M.
,
Danduran
,
M.
,
Schindler-Ivens
,
S.
,
Liebham
,
S.
, and
LaDisa
,
J. F.
, Jr.
,
2017
, “
Toward Translating Near-Infrared Spectroscopy Oxygen Saturation Data for the Non-Invasive Prediction of Spatial and Temporal Hemodynamics During Exercise
,”
Biomech. Model. Mechanobiol.
, 16(1), pp.
75
96
.10.1007/s10237-016-0803-4
25.
LaDisa
,
J. F.
, Jr.
,
Figueroa
,
C. A.
,
Vignon-Clementel
,
I. E.
,
Kim
,
H. J.
,
Xiao
,
N.
,
Ellwein
,
L. M.
,
Chan
,
F. P.
,
Feinstein
,
J. A.
, and
Taylor
,
C. A.
,
2011
, “
Computational Simulations for Aortic Coarctation: Representative Results From a Sampling of Patients
,”
ASME J. Biomech. Eng.
,
133
(
9
), p.
91008
.10.1115/1.4004996
26.
Zhou
,
Y.
,
Kassab
,
G. S.
, and
Molloi
,
S.
,
1999
, “
On the Design of the Coronary Arterial Tree: A Generalization of Murray's Law
,”
Phys. Med. Biol.
,
44
(
12
), pp.
2929
2945
.10.1088/0031-9155/44/12/306
27.
Stergiopulos
,
N.
,
Segers
,
P.
, and
Westerhof
,
N.
,
1999
, “
Use of Pulse Pressure Method for Estimating Total Arterial Compliance In Vivo
,”
Am. J. Physiol. Circ. Physiol.
,
276
(
2
), pp.
H424
H428
.10.1152/ajpheart.1999.276.2.H424
28.
Kim
,
H. J.
,
Vignon-Clementel
,
I. E.
,
Coogan
,
J. S.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2010
, “
Patient-Specific Modeling of Blood Flow and Pressure in Human Coronary Arteries
,”
Ann. Biomed. Eng.
,
38
(
10
), pp.
3195
3209
.10.1007/s10439-010-0083-6
29.
Spaan
,
J. A. E.
,
1985
, “
Coronary Diastolic Pressure-Flow Relation and Zero Flow Pressure Explained on the Basis of Intramyocardial Compliance
,”
Circ. Res.
,
56
(
3
), pp.
293
309
.10.1161/01.RES.56.3.293
30.
Moghadam
,
M. E.
,
Vignon-Clementel
,
I. E.
,
Figliola
,
R.
, and
Marsden
,
A. L.
,
2013
, “
A Modular Numerical Method for Implicit 0D/3D Coupling in Cardiovascular Finite Element Simulations
,”
J. Comput. Phys.
, 244, pp.
63
79
.10.1016/j.jcp.2012.07.035
31.
Razavi
,
A.
,
Sachdeva
,
S.
,
Frommelt
,
P. C.
, and
LaDisa
,
J. F.
, Jr
,
2019
, “
Selection of Patient-Specific Boundary Conditions With Application to Anomalous Aortic Origin of a Coronary Artery Under Resting and Stress Conditions
,”
Bimed. Sci. Instrument.
,
55
(
2
), pp.
388
398
.
32.
Sankaran
,
S.
,
Moghadam
,
M. E.
,
Kahn
,
A. M.
,
Tseng
,
E. E.
,
Guccione
,
J. M.
, and
Marsden
,
A. L.
,
2012
, “
Patient-Specific Multiscale Modeling of Blood Flow for Coronary Artery Bypass Graft Surgery
,”
Ann. Biomed. Eng.
,
40
(
10
), pp.
2228
2242
.10.1007/s10439-012-0579-3
33.
LaDisa
,
J. F.
, Jr.
,
Dholakia
,
R. J.
,
Figueroa
,
C. A.
,
Vignon-Clementel
,
I. E.
,
Chan
,
F. P.
,
Samyn
,
M. M.
,
Cava
,
J. R.
,
Taylor
,
C. A.
, and
Feinstein
,
J. A.
,
2011
, “
Computational Simulations Demonstrate Altered Wall Shear Stress in Aortic Coarctation Patients Treated by Resection With End-to-End Anastomosis
,”
Congenit. Heart Dis.
,
6
(5), pp.
432
443
.10.1111/j.1747-0803.2011.00553.x
34.
Coogan
,
J. S.
,
Humphrey
,
J. D.
, and
Figueroa
,
C. A.
,
2013
, “
Computational Simulations of Hemodynamic Changes Within Thoracic, Coronary, and Cerebral Arteries Following Early Wall Remodeling in Response to Distal Aortic Coarctation
,”
Biomech. Model. Mechanobiol.
,
12
(
1
), pp.
79
93
.10.1007/s10237-012-0383-x
35.
Marcus
,
T. T.
,
Smeenk
,
H. G.
,
Kuijer
,
J. P. A.
,
Van Der Geest
,
R. J.
,
Heethaar
,
R. M.
, and
Van Rossum
,
A. C.
,
1999
, “
Flow Profiles in the Left Anterior Descending and the Right Coronary Artery Assessed by MR Velocity Quantification: Effects of Through-Plane and in-Plane Motion of the Heart
,”
J. Comput. Assist. Tomogr.
, 23(4), pp.
567
576
.10.1097/00004728-199907000-00017
36.
Hayabuchi
,
Y.
,
Ono
,
A.
,
Homma
,
Y.
, and
Kagami
,
S.
,
2018
, “
Analysis of Right Ventricular Myocardial Stiffness and Relaxation Components in Children and Adolescents With Pulmonary Arterial Hypertension
,”
J. Am. Heart Assoc.
,
7
(
9
), pp.
1
11
.10.1161/JAHA.118.008670
37.
Wong
,
J.
,
Pushparajah
,
K.
,
De Vecchi
,
A.
,
Greil
,
G. F.
,
Hussain
,
T.
, and
Razavi
,
R.
,
2014
, “
Myocardial Contractile Response to Dobutamine in Hypoplastic Left Heart Syndrome Post-Fontan
,”
J. Cardiovasc. Magn. Reson.
,
16
(
Suppl 1
), p.
O104
.10.1186/1532-429X-16-S1-O104
38.
Van De Hoef
,
T. P.
,
Meuwissen
,
M.
,
Escaned
,
J.
,
Davies
,
J. E.
,
Siebes
,
M.
,
Spaan
,
J. A. E.
, and
Piek
,
J. J.
,
2013
, “
Fractional Flow Reserve as a Surrogate for Inducible Myocardial Ischaemia
,”
Nat. Rev. Cardiol.
,
10
(
8
), pp.
439
452
.10.1038/nrcardio.2013.86
39.
Marcovecchio
,
M. L.
, and
Chiarelli
,
F.
,
2011
, “
Microvascular Disease in Children and Adolescents With Type 1 Diabetes and Obesity
,”
Pediatr. Nephrol.
,
26
(
3
), pp.
365
375
.10.1007/s00467-010-1624-9
40.
Zeng
,
D.
,
Ding
,
Z.
,
Friedman
,
M. H.
, and
Ethier
,
C. R.
,
2003
, “
Effects of Cardiac Motion on Right Coronary Artery Hemodynamics
,”
Ann. Biomed. Eng.
,
31
(
4
), pp.
420
429
.10.1114/1.1560631
41.
Zeng
,
D.
,
Boutsianis
,
E.
,
Ammann
,
M.
,
Boomsma
,
K.
,
Wildermuth
,
S.
, and
Poulikakos
,
D.
,
2008
, “
A Study on the Compliance of a Right Coronary Artery and Its Impact on Wall Shear Stress
,”
ASME J. Biomech. Eng.
,
130
(
4
), p.
041014
.10.1115/1.2937744
42.
Santamarina
,
A.
,
Weydahl
,
E.
,
Siegel
,
J. M.
, and
Moore
,
J. E.
,
1998
, “
Computational Analysis of Flow in a Curved Tube Model of the Coronary Arteries: Effects of Time-Varying Curvature
,”
Ann. Biomed. Eng.
,
26
(
6
), pp.
944
954
.10.1114/1.113
43.
Towns
,
J.
,
Cockerill
,
T.
,
Dahan
,
M.
,
Foster
,
I.
,
Gaither
,
K.
,
Grimshaw
,
A.
,
Hazlewood
,
V.
,
Lathrop
,
S.
,
Lifka
,
D.
,
Peterson
,
G. D.
,
Roskies
,
R.
,
Scott
,
J. R.
, and
Wilkins-Diehr
,
N.
,
2014
, “
XSEDE: Accelerating Scientific Discovery
,”
Comput. Sci. Eng.
,
16
(
5
), pp.
62
74
.10.1109/MCSE.2014.80
You do not currently have access to this content.