Abstract

In the past decades, the structure of the heart, human as well as other species, has been explored in a detailed way, e.g., via histological studies or diffusion tensor magnetic resonance imaging. Nevertheless, the assignment of the characteristic orthotropic structure in a patient-specific finite element model remains a challenging task. Various types of rule-based models, which define the local fiber and sheet orientation depending on the transmural depth, have been developed. However, the correct assessment of the transmural depth is not trivial. Its accuracy has a substantial influence on the overall mechanical and electrical properties in rule-based models. The main purpose of this study is the development of a finite element-based approach to accurately determine the transmural depth on a general unstructured grid. Instead of directly using the solution of the Laplace problem as the transmural depth, we make use of a well-established model for the assessment of the transmural thickness. It is based on two hyperbolic first-order partial differential equations for the definition of a transmural path, whereby the transmural thickness is defined as the arc length of this path. Subsequently, the transmural depth is determined based on the position on the transmural path. Originally, the partial differential equations were solved via finite differences on structured grids. In order to circumvent the need of two grids and mapping between the structured (to determine the transmural depth) and unstructured (electromechanical heart simulation) grids, we solve the equations directly on the same unstructured tetrahedral mesh. We propose a finite-element-based discontinuous Galerkin approach. Based on the accurate transmural depth, we assign the local material orientation of the orthotropic tissue structure in a usual fashion. We show that this approach leads to a more accurate definition of the transmural depth. Furthermore, for the left ventricle, we propose functions for the transmural fiber and sheet orientation by fitting them to literature-based diffusion tensor magnetic resonance imaging data. The proposed functions provide a distinct improvement compared to existing rules from the literature.

References

1.
Hunter
,
P. J.
, and
Smaill
,
B. H.
,
1988
, “
The Analysis of Cardiac Function: A Continuum Approach
,”
Prog. Biophys. Mol. Biol.
,
52
(
2
), pp.
101
164
.10.1016/0079-6107(88)90004-1
2.
Hunter
,
P.
,
McCulloch
,
A.
, and
Ter Keurs
,
H.
,
1998
, “
Modelling the Mechanical Properties of Cardiac Muscle
,”
Prog. Biophys. Mol. Biol.
,
69
(
2–3
), pp.
289
331
.10.1016/S0079-6107(98)00013-3
3.
Trayanova
,
N. A.
,
2011
, “
Whole-Heart Modeling
,”
Circ. Res.
,
108
(
1
), pp.
113
128
.10.1161/CIRCRESAHA.110.223610
4.
Baillargeon
,
B.
,
Rebelo
,
N.
,
Fox
,
D. D.
,
Taylor
,
R. L.
, and
Kuhl
,
E.
,
2014
, “
The Living Heart Project: A Robust and Integrative Simulator for Human Heart Function
,”
Eur. J. Mech.-A/Solids
,
48
, pp.
38
47
.10.1016/j.euromechsol.2014.04.001
5.
Buckberg
,
G.
,
Hoffman
,
J. I.
,
Mahajan
,
A.
,
Saleh
,
S.
, and
Coghlan
,
C.
,
2008
, “
Cardiac Mechanics Revisited: The Relationship of Cardiac Architecture to Ventricular Function
,”
Circulation
,
118
(
24
), pp.
2571
2587
.10.1161/CIRCULATIONAHA.107.754424
6.
Huikuri
,
H. V.
,
Castellanos
,
A.
, and
Myerburg
,
R. J.
,
2001
, “
Sudden Death Due to Cardiac Arrhythmias
,”
N. Engl. J. Med.
,
345
(
20
), pp.
1473
1482
.10.1056/NEJMra000650
7.
Hooks
,
D. A.
,
Trew
,
M. L.
,
Caldwell
,
B. J.
,
Sands
,
G. B.
,
LeGrice
,
I. J.
, and
Smaill
,
B. H.
,
2007
, “
Laminar Arrangement of Ventricular Myocytes Influences Electrical Behavior of the Heart
,”
Circ. Res.
,
101
(
10
), pp.
e103
e112
.10.1161/CIRCRESAHA.107.161075
8.
Eriksson
,
T. S.
,
Prassl
,
A.
,
Plank
,
G.
, and
Holzapfel
,
G. A.
,
2013
, “
Influence of Myocardial Fiber/Sheet Orientations on Left Ventricular Mechanical Contraction
,”
Math. Mech. Solids
,
18
(
6
), pp.
592
606
.10.1177/1081286513485779
9.
Taccardi
,
B.
,
Macchi
,
E.
,
Lux
,
R. L.
,
Ershler
,
P. R.
,
Spaggiari
,
S.
,
Baruffi
,
S.
, and
Vyhmeister
,
Y.
,
1994
, “
Effect of Myocardial Fiber Direction on Epicardial Potentials
,”
Circulation
,
90
(
6
), pp.
3076
3090
.10.1161/01.CIR.90.6.3076
10.
Wang
,
V. Y.
,
Lam
,
H.
,
Ennis
,
D. B.
,
Cowan
,
B. R.
,
Young
,
A. A.
, and
Nash
,
M. P.
,
2009
, “
Modelling Passive Diastolic Mechanics With Quantitative MRI of Cardiac Structure and Function
,”
Med. Image Anal.
,
13
(
5
), pp.
773
784
.10.1016/j.media.2009.07.006
11.
Maron
,
B. J.
, and
Roberts
,
W. C.
,
1979
, “
Quantitative Analysis of Cardiac Muscle Cell Disorganization in the Ventricular Septum of Patients With Hypertrophic Cardiomyopathy
,”
Circulation
,
59
(
4
), pp.
689
706
.10.1161/01.CIR.59.4.689
12.
Dec
,
G. W.
, and
Fuster
,
V.
,
1994
, “
Idiopathic Dilated Cardiomyopathy
,”
New Engl. J. Med.
,
331
(
23
), pp.
1564
1575
.10.1056/NEJM199412083312307
13.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
, 2009,
1902
, “
Constitutive Modelling of Passive Myocardium: A Structurally Based Framework for Material Characterization
,”
R. Soc. Lond. Philos. Trans. A: Math. Phys. Eng. Sci.
,
367
, pp.
3445
3475
.10.1098/rsta.2009.0091
14.
Costa
,
K. D.
,
Takayama
,
Y.
,
McCulloch
,
A. D.
, and
Covell
,
J. W.
,
1999
, “
Laminar Fiber Architecture and Three-Dimensional Systolic Mechanics in Canine Ventricular Myocardium
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
276
(
2
), pp.
H595
H607
.10.1152/ajpheart.1999.276.2.H595
15.
Fernandez-Teran
,
M.
, and
Hurle
,
J.
,
1982
, “
Myocardial Fiber Architecture of the Human Heart Ventricles
,”
Anat. Rec.
,
204
(
2
), pp.
137
147
.10.1002/ar.1092040207
16.
Streeter
,
D. D.
, Jr.
,
Spotnitz
,
H. M.
,
Patel
,
D. P.
,
Ross
,
J.
, Jr.
, and
Sonnenblick
,
E. H.
,
1969
, “
Fiber Orientation in the Canine Left Ventricle During Diastole and Systole
,”
Circ. Res.
,
24
(
3
), pp.
339
347
.10.1161/01.RES.24.3.339
17.
LeGrice
,
I. J.
,
Smaill
,
B.
,
Chai
,
L.
,
Edgar
,
S.
,
Gavin
,
J.
, and
Hunter
,
P. J.
,
1995
, “
Laminar Structure of the Heart: Ventricular Myocyte Arrangement and Connective Tissue Architecture in the Dog
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
269
(
2
), pp.
H571
H582
.10.1152/ajpheart.1995.269.2.H571
18.
Holmes
,
A. A.
,
Scollan
,
D.
, and
Winslow
,
R. L.
,
2000
, “
Direct Histological Validation of Diffusion Tensor MRI in Formaldehyde-Fixed Myocardium
,”
Magn. Reson. Med.
,
44
(
1
), pp.
157
161
.10.1002/1522-2594(200007)44:1<157::AID-MRM22>3.0.CO;2-F
19.
Rohmer
,
D.
,
Sitek
,
A.
, and
Gullberg
,
G. T.
,
2007
, “
Reconstruction and Visualization of Fiber and Laminar Structure in the Normal Human Heart From Ex Vivo Diffusion Tensor Magnetic Resonance Imaging (DTMRI) Data
,”
Investig. Radiol.
,
42
(
11
), pp.
777
789
.10.1097/RLI.0b013e3181238330
20.
Scollan
,
D. F.
,
Holmes
,
A.
,
Winslow
,
R.
, and
Forder
,
J.
,
1998
, “
Histological Validation of Myocardial Microstructure Obtained From Diffusion Tensor Magnetic Resonance Imaging
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
275
(
6
), pp.
H2308
H2318
.10.1152/ajpheart.1998.275.6.H2308
21.
Scollan
,
D.
,
Holmes
,
A.
,
Zhang
,
J.
, and
Winslow
,
R.
,
2000
, “
Reconstruction of Cardiac Ventricular Geometry and Fiber Orientation Using Magnetic Resonance Imaging
,”
Ann. Biomed. Eng.
,
28
(
8
), pp.
934
944
.10.1114/1.1312188
22.
Toussaint
,
N.
,
Stoeck
,
C. T.
,
Schaeffter
,
T.
,
Kozerke
,
S.
,
Sermesant
,
M.
, and
Batchelor
,
P. G.
,
2013
, “
In Vivo Human Cardiac Fibre Architecture Estimation Using Shape-Based Diffusion Tensor Processing
,”
Med. Image Anal.
,
17
(
8
), pp.
1243
1255
.10.1016/j.media.2013.02.008
23.
Helm
,
P.
,
Beg
,
M. F.
,
Miller
,
M. I.
, and
Winslow
,
R. L.
,
2005
, “
Measuring and Mapping Cardiac Fiber and Laminar Architecture Using Diffusion Tensor MR Imaging
,”
Ann.-N. Y. Acad. Sci.
,
1047
(
1
), pp.
296
307
.10.1196/annals.1341.026
24.
Konofagou
,
E. E.
,
D?Hooge
,
J.
, and
Ophir
,
J.
,
2002
, “
Myocardial Elastography?A Feasibility Study In Vivo
,”
Ultrasound Med. Biol.
,
28
(
4
), pp.
475
482
.10.1016/S0301-5629(02)00488-X
25.
Papadacci
,
C.
,
Finel
,
V.
,
Provost
,
J.
,
Villemain
,
O.
,
Bruneval
,
P.
,
Gennisson
,
J.-L.
,
Tanter
,
M.
,
Fink
,
M.
, and
Pernot
,
M.
,
2017
, “
Imaging the Dynamics of Cardiac Fiber Orientation In Vivo Using 3D Ultrasound Backscatter Tensor Imaging
,”
Sci. Rep.
,
7
(
1
), pp.
1
9
.10.1038/s41598-017-00946-7
26.
Gonzalez-Tendero
,
A.
,
Zhang
,
C.
,
Balicevic
,
V.
,
Cárdenes
,
R.
,
Loncaric
,
S.
,
Butakoff
,
C.
,
Paun
,
B.
,
Bonnin
,
A.
,
Garcia-Cañadilla
,
P.
,
Muñoz-Moreno
,
E.
,
Gratacós
,
E.
,
Crispi
,
F.
, and
Bijnens
,
B.
,
2017
, “
Whole Heart Detailed and Quantitative Anatomy, Myofibre Structure and Vasculature From X-Ray Phase-Contrast Synchrotron Radiation-Based Micro Computed Tomography
,”
Eur. Heart J.-Cardiovasc. Imaging
,
18
(
7
), pp.
732
741
.10.1093/ehjci/jew314
27.
Varray
,
F.
,
Mirea
,
I.
,
Langer
,
M.
,
Peyrin
,
F.
,
Fanton
,
L.
, and
Magnin
,
I. E.
,
2017
, “
Extraction of the 3D Local Orientation of Myocytes in Human Cardiac Tissue Using X-Ray Phase-Contrast Micro-Tomography and Multi-Scale Analysis
,”
Med. Image Anal.
,
38
, pp.
117
132
.10.1016/j.media.2017.02.006
28.
Gurev
,
V.
,
Lee
,
T.
,
Constantino
,
J.
,
Arevalo
,
H.
, and
Trayanova
,
N. A.
,
2011
, “
Models of Cardiac Electromechanics Based on Individual Hearts Imaging Data
,”
Biomech. Model. Mechanobiol.
,
10
(
3
), pp.
295
306
.10.1007/s10237-010-0235-5
29.
Bishop
,
M. J.
,
Plank
,
G.
,
Burton
,
R. A.
,
Schneider
,
J. E.
,
Gavaghan
,
D. J.
,
Grau
,
V.
, and
Kohl
,
P.
,
2010
, “
Development of an Anatomically Detailed MRI-Derived Rabbit Ventricular Model and Assessment of Its Impact on Simulations of Electrophysiological Function
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
298
(
2
), pp.
H699
H718
.10.1152/ajpheart.00606.2009
30.
Sack
,
K. L.
,
Aliotta
,
E.
,
Ennis
,
D. B.
,
Choy
,
J. S.
,
Kassab
,
G. S.
,
Guccione
,
J. M.
, and
Franz
,
T.
,
2018
, “
Construction and Validation of Subject-Specific Biventricular Finite-Element Models of Healthy and Failing Swine Hearts From High-Resolution DT-MRI
,”
Front. Physiol.
,
9
, p.
539
.10.3389/fphys.2018.00539
31.
Carapella
,
V.
,
Bordas
,
R.
,
Pathmanathan
,
P.
,
Lohezic
,
M.
,
Schneider
,
J. E.
,
Kohl
,
P.
,
Burrage
,
K.
, and
Grau
,
V.
,
2014
, “
Quantitative Study of the Effect of Tissue Microstructure on Contraction in a Computational Model of Rat Left Ventricle
,”
PLoS One
,
9
(
4
), p.
e92792
.10.1371/journal.pone.0092792
32.
Potse
,
M.
,
Dubé
,
B.
,
Richer
,
J.
,
Vinet
,
A.
, and
Gulrajani
,
R. M.
,
2006
, “
A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart
,”
IEEE Trans. Biomed. Eng.
,
53
(
12
), pp.
2425
2435
.10.1109/TBME.2006.880875
33.
Bayer
,
J. D.
,
Blake
,
R. C.
,
Plank
,
G.
, and
Trayanova
,
N. A.
,
2012
, “
A Novel Rule-Based Algorithm for Assigning Myocardial Fiber Orientation to Computational Heart Models
,”
Ann. Biomed. Eng.
,
40
(
10
), pp.
2243
2254
.10.1007/s10439-012-0593-5
34.
Doste
,
R.
,
Soto-Iglesias
,
D.
,
Bernardino
,
G.
,
Alcaine
,
A.
,
Sebastian
,
R.
,
Giffard-Roisin
,
S.
,
Sermesant
,
M.
,
Berruezo
,
A.
,
Sanchez-Quintana
,
D.
, and
Camara
,
O.
,
2019
, “
A Rule-Based Method to Model Myocardial Fiber Orientation in Cardiac Biventricular Geometries With Outflow Tracts
,”
Int. J. Numer. Methods Biomed. Eng.
,
35
(
4
), p.
e3185
.10.1002/cnm.3185
35.
Wong
,
J.
, and
Kuhl
,
E.
,
2014
, “
Generating Fibre Orientation Maps in Human Heart Models Using Poisson Interpolation
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
11
), pp.
1217
1226
.10.1080/10255842.2012.739167
36.
Jones
,
S. E.
,
Buchbinder
,
B. R.
, and
Aharon
,
I.
,
2000
, “
Three-Dimensional Mapping of Cortical Thickness Using Laplace's Equation
,”
Hum. Brain Map.
,
11
(
1
), pp.
12
32
.10.1002/1097-0193(200009)11:1<12::AID-HBM20>3.0.CO;2-K
37.
Yezzi
,
A. J.
, and
Prince
,
J. L.
,
2003
, “
An Eulerian PDE Approach for Computing Tissue Thickness
,”
IEEE Trans. Med. Imaging
,
22
(
10
), pp.
1332
1339
.10.1109/TMI.2003.817775
38.
van Hal
,
V. H.
,
Zhao
,
D.
,
Gilbert
,
K.
,
Gamage
,
T. P. B.
,
Mauger
,
C.
,
Doughty
,
R. N.
,
Legget
,
M. E.
,
Zhao
,
J.
,
Nalar
,
A.
,
Camara
,
O.
,
2019
, “
Comparison of 2D Echocardiography and Cardiac Cine MRI in the Assessment of Regional Left Ventricular Wall Thickness
,”
International Workshop on Statistical Atlases and Computational Models of the Heart
, 10th International Workshop, STACOM 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, Oct. 13, pp.
52
62
.
39.
Wang
,
Y.
,
Xiong
,
Z.
,
Nalar
,
A.
,
Hansen
,
B. J.
,
Kharche
,
S.
,
Seemann
,
G.
,
Loewe
,
A.
,
Fedorov
,
V. V.
, and
Zhao
,
J.
,
2019
, “
A Robust Computational Framework for Estimating 3D Bi-Atrial Chamber Wall Thickness
,”
Comput. Biol. Med.
,
114
, p.
103444
.10.1016/j.compbiomed.2019.103444
40.
Troy
,
B. L.
,
Pombo
,
J.
, and
Rackley
,
C. E.
,
1972
, “
Measurement of Left Ventricular Wall Thickness and Mass by Echocardiography
,”
Circulation
,
45
(
3
), pp.
602
611
.10.1161/01.CIR.45.3.602
41.
Alnæs
,
M. S.
,
Blechta
,
J.
,
Hake
,
J.
,
Johansson
,
A.
,
Kehlet
,
B.
,
Logg
,
A.
,
Richardson
,
C.
,
Ring
,
J.
,
Rognes
,
M. E.
, and
Wells
,
G. N.
,
2015
, “
The fenics Project Version 1.5
,”
Arch. Numer. Softw.
,
3
(
100
), pp.
9
23
.10.11588/ans.2015.100.20553
42.
Logg
,
A.
,
Mardal
,
K.-A.
,
Wells
,
G. N.
,
2012
,
Automated Solution of Differential Equations by the Finite Element Method
, Springer-Verlag Berlin Heidelberg
.10.1007/978-3-642-23099-8
43.
Arnold
,
D. N.
,
Brezzi
,
F.
,
Cockburn
,
B.
, and
Marini
,
L. D.
,
2002
, “
Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems
,”
SIAM J. Numer. Anal.
,
39
(
5
), pp.
1749
1779
.10.1137/S0036142901384162
44.
Brezzi
,
F.
,
Marini
,
L. D.
, and
Süli
,
E.
,
2004
, “
Discontinuous Galerkin Methods for First-Order Hyperbolic Problems
,”
Math. Models Methods Appl. Sci.
,
14
(
12
), pp.
1893
1903
.10.1142/S0218202504003866
You do not currently have access to this content.