Abstract

Numerical simulations for computational hemodynamics in clinical settings require a combination of many ingredients, mathematical models, solvers and patient-specific data. The sensitivity of the solutions to these factors may be critical, particularly when we have a partial or noisy knowledge of data. Uncertainty quantification is crucial to assess the reliability of the results. We present here an extensive sensitivity analysis in aortic flow simulations, to quantify the dependence of clinically relevant quantities to the patient-specific geometry and the inflow boundary conditions. Geometry and inflow conditions are generally believed to have a major impact on numerical simulations. We resort to a global sensitivity analysis, (i.e., not restricted to a linearization around a working point), based on polynomial chaos expansion (PCE) and the associated Sobol' indices. We regard the geometry and the inflow conditions as the realization of a parametric stochastic process. To construct a physically consistent stochastic process for the geometry, we use a set of longitudinal-in-time images of a patient with an abdominal aortic aneurysm (AAA) to parametrize geometrical variations. Aortic flow is highly disturbed during systole. This leads to high computational costs, even amplified in a sensitivity analysis -when many simulations are needed. To mitigate this, we consider here a large Eddy simulation (LES) model. Our model depends in particular on a user-defined parameter called filter radius. We borrowed the tools of the global sensitivity analysis to assess the sensitivity of the solution to this parameter too. The targeted quantities of interest (QoI) include: the total kinetic energy (TKE), the time-average wall shear stress (TAWSS), and the oscillatory shear index (OSI). The results show that these indexes are mostly sensitive to the geometry. Also, we find that the sensitivity may be different during different instants of the heartbeat and in different regions of the domain of interest. This analysis helps to assess the reliability of in silico tools for clinical applications.

References

References
1.
Romarowski
,
R. M.
,
Lefieux
,
A.
,
Morganti
,
S.
,
Veneziani
,
A.
, and
Auricchio
,
F.
,
2018
, “
Patient-Specific Cfd Modelling in the Thoracic Aorta With Pc-Mri–Based Boundary Conditions: A Least-Square Three-Element Windkessel Approach
,”
Int. J. Numer. Methods Biomed. Eng.
,
34
(
11
), p.
e3134
.10.1002/cnm.3134
2.
Xu
,
H.
,
Piccinelli
,
M.
,
Leshnower
,
B. G.
,
Lefieux
,
A.
,
Taylor
,
W. R.
, and
Veneziani
,
A.
,
2018
, “
Coupled Morphological–Hemodynamic Computational Analysis of Type b Aortic Dissection: A Longitudinal Study
,”
Ann. Biomed. Eng.
,
46
(
7
), pp.
927
939
.10.1007/s10439-018-2012-z
3.
Gallo
,
D.
,
Steinman
,
D. A.
,
Bijari
,
P. B.
, and
Morbiducci
,
U.
,
2012
, “
Helical Flow in Carotid Bifurcation as Surrogate Marker of Exposure to Disturbed Shear
,”
J. Biomech.
,
45
(
14
), pp.
2398
2404
.10.1016/j.jbiomech.2012.07.007
4.
Xu
,
X.
,
Borghi
,
A.
,
Nchimi
,
A.
,
Leung
,
J.
,
Gomez
,
P.
,
Cheng
,
Z.
,
Defraigne
,
J.-O.
, and
Sakalihasan
,
N.
,
2010
, “
High Levels of 18f-Fdg Uptake in Aortic Aneurysm Wall Are Associated With High Wall Stress
,”
Eur. J. Vasc. Endovascular Surg.
,
39
(
3
), pp.
295
301
.10.1016/j.ejvs.2009.10.016
5.
Auricchio
,
F.
,
Conti
,
M.
,
Lefieux
,
A.
,
Morganti
,
S.
,
Reali
,
A.
,
Sardanelli
,
F.
,
Secchi
,
F.
,
Trimarchi
,
S.
, and
Veneziani
,
A.
,
2014
, “
Patient-Specific Analysis of Post-Operative Aortic Hemodynamics: A Focus on Thoracic Endovascular Repair (Tevar)
,”
Comput. Mech.
,
54
(
4
), pp.
943
953
.10.1007/s00466-014-0976-6
6.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2008
,
Global Sensitivity Analysis: The Primer
,
John Wiley & Sons
,
Hoboken, NJ
.
7.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
.10.1016/j.ress.2007.04.002
8.
Crestaux
,
T.
,
Le Maıtre
,
O.
, and
Martinez
,
J.-M.
,
2009
, “
Polynomial Chaos Expansion for Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
94
(
7
), pp.
1161
1172
.10.1016/j.ress.2008.10.008
9.
Huan
,
X.
,
Safta
,
C.
,
Sargsyan
,
K.
,
Geraci
,
G.
,
Eldred
,
M. S.
,
Vane
,
Z. P.
,
Lacaze
,
G.
,
Oefelein
,
J. C.
, and
Najm
,
H. N.
,
2018
, “
Global Sensitivity Analysis and Estimation of Model Error, Toward Uncertainty Quantification in Scramjet Computations
,”
AIAA J.
,
56
(
3
), pp.
1170
1184
.10.2514/1.J056278
10.
Guzzetti
,
S.
,
Alvarez
,
L. M.
,
Blanco
,
P.
,
Carlberg
,
K.
, and
Veneziani
,
A.
,
2020
, “
Propagating Uncertainties in Large-Scale Hemodynamics Models Via Network Uncertainty Quantification and Reduced-Order Modeling
,”
Comput. Methods Appl. Mech. Eng.
,
358
, p.
112626
.10.1016/j.cma.2019.112626
11.
Tran
,
J. S.
,
Schiavazzi
,
D. E.
,
Kahn
,
A. M.
, and
Marsden
,
A. L.
,
2019
, “
Uncertainty Quantification of Simulated Biomechanical Stimuli in Coronary Artery Bypass Grafts
,”
Comput. Methods Appl. Mech. Eng.
,
345
, pp.
402
428
.10.1016/j.cma.2018.10.024
12.
Sankaran
,
S.
, and
Marsden
,
A. L.
,
2011
, “
A Stochastic Collocation Method for Uncertainty Quantification and Propagation in Cardiovascular Simulations
,”
ASME J. Biomech. Eng.
,
133
(
3
), p.
031001
.10.1115/1.4003259
13.
Boccadifuoco
,
A.
,
Mariotti
,
A.
,
Celi
,
S.
,
Martini
,
N.
, and
Salvetti
,
M. V.
,
2016
, “
Uncertainty Quantification in Numerical Simulations of the Flow in Thoracic Aortic Aneurysms
,”
Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens, Ntua
,
Athens, Greece
, pp.
6226
6249
.10.7712/100016.2254.10164
14.
Brault
,
A.
,
Dumas
,
L.
, and
Lucor
,
D.
,
2017
, “
Uncertainty Quantification of Inflow Boundary Condition and Proximal Arterial Stiffness–Coupled Effect on Pulse Wave Propagation in a Vascular Network
,”
Int. J. Numer. Methods Biomed. Eng.
,
33
(
10
), p.
e2859
.10.1002/cnm.2859
15.
Sankaran
,
S.
,
Kim
,
H. J.
,
Choi
,
G.
, and
Taylor
,
C. A.
,
2016
, “
Uncertainty Quantification in Coronary Blood Flow Simulations: Impact of Geometry, Boundary Conditions and Blood Viscosity
,”
J. Biomech.
,
49
(
12
), pp.
2540
2547
.10.1016/j.jbiomech.2016.01.002
16.
Valen-Sendstad
,
K.
,
Piccinelli
,
M.
,
KrishnankuttyRema
,
R.
, and
Steinman
,
D. A.
,
2015
, “
Estimation of Inlet Flow Rates for Image-Based Aneurysm Cfd Models: Where and How to Begin?
,”
Ann. Biomed. Eng.
,
43
(
6
), pp.
1422
1431
.10.1007/s10439-015-1288-5
17.
Bozzi
,
S.
,
Morbiducci
,
U.
,
Gallo
,
D.
,
Ponzini
,
R.
,
Rizzo
,
G.
,
Bignardi
,
C.
, and
Passoni
,
G.
,
2017
, “
Uncertainty Propagation of Phase Contrast-Mri Derived Inlet Boundary Conditions in Computational Hemodynamics Models of Thoracic Aorta
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
10
), pp.
1104
1112
.10.1080/10255842.2017.1334770
18.
D'Elia
,
M.
, and
Veneziani
,
A.
,
2013
, “
Uncertainty Quantification for Data Assimilation in a Steady Incompressible Navier-Stokes Problem
,”
ESAIM: Math. Modell. Numer. Anal.
,
47
(
4
), pp.
1037
1057
.10.1051/m2an/2012056
19.
Xu
,
H.
,
Baroli
,
D.
,
Di Massimo
,
F.
,
Quaini
,
A.
, and
Veneziani
,
A.
,
2020
, “
Backflow Stabilization by Deconvolution-Based Large Eddy Simulation Modeling
,”
J. Comput. Phys.
,
404
, p.
109103
.10.1016/j.jcp.2019.109103
20.
Bertagna
,
L.
,
Quaini
,
A.
, and
Veneziani
,
A.
,
2016
, “
Deconvolution-Based Nonlinear Filtering for Incompressible Flows at Moderately Large Reynolds Numbers
,”
Int. J. Numer. Methods Fluids
,
81
(
8
), pp.
463
488
.10.1002/fld.4192
21.
Bertagna
,
L.
,
Quaini
,
A.
,
Rebholz
,
L. G.
, and
Veneziani
,
A.
,
2019
, “
On the Sensitivity to the Filtering Radius in Leray Models of Incompressible Flow
,”
Contributions to Partial Differential Equations and Applications
,
Springer
,
Berlin
, pp.
111
130
.
22.
Salsac
,
A.-V.
,
Sparks
,
S.
,
Chomaz
,
J.-M.
, and
Lasheras
,
J.
,
2006
, “
Evolution of the Wall Shear Stresses During the Progressive Enlargement of Symmetric Abdominal Aortic Aneurysms
,”
J. Fluid Mech.
,
560
, pp.
19
51
.10.1017/S002211200600036X
23.
Les
,
A. S.
,
Shadden
,
S. C.
,
Figueroa
,
C. A.
,
Park
,
J. M.
,
Tedesco
,
M. M.
,
Herfkens
,
R. J.
,
Dalman
,
R. L.
, and
Taylor
,
C. A.
,
2010
, “
Quantification of Hemodynamics in Abdominal Aortic Aneurysms During Rest and Exercise Using Magnetic Resonance Imaging and Computational Fluid Dynamics
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1288
1313
.10.1007/s10439-010-9949-x
24.
Arzani
,
A.
,
Suh
,
G.-Y.
,
Dalman
,
R. L.
, and
Shadden
,
S. C.
,
2014
, “
A Longitudinal Comparison of Hemodynamics and Intraluminal Thrombus Deposition in Abdominal Aortic Aneurysms
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
307
(
12
), pp.
H1786
H1795
.10.1152/ajpheart.00461.2014
25.
Boyd
,
A. J.
,
Kuhn
,
D. C.
,
Lozowy
,
R. J.
, and
Kulbisky
,
G. P.
,
2016
, “
Low Wall Shear Stress Predominates at Sites of Abdominal Aortic Aneurysm Rupture
,”
J. Vasc. Surg.
,
63
(
6
), pp.
1613
1619
.10.1016/j.jvs.2015.01.040
26.
Qiu
,
Y.
,
Yuan
,
D.
,
Wen
,
J.
,
Fan
,
Y.
, and
Zheng
,
T.
,
2018
, “
Numerical Identification of the Rupture Locations in Patient-Specific Abdominal Aortic Aneurysmsusing Hemodynamic Parameters
,”
Comput. Methods Biomech. Biomed. Eng.
,
21
(
1
), pp.
1
12
.10.1080/10255842.2017.1410796
27.
Formaggia
,
L.
,
Quarteroni
,
A.
, and
Veneziani
,
A.
,
2010
,
Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System
, Vol.
1
,
Springer Science & Business Media
,
Berlin
.
28.
Lantz
,
J.
,
Ebbers
,
T.
,
Engvall
,
J.
, and
Karlsson
,
M.
,
2013
, “
Numerical and Experimental Assessment of Turbulent Kinetic Energy in an Aortic Coarctation
,”
J. Biomech.
,
46
(
11
), pp.
1851
1858
.10.1016/j.jbiomech.2013.04.028
29.
Ha
,
H.
,
Ziegler
,
M.
,
Welander
,
M.
,
Bjarnegård
,
N.
,
Carlhäll
,
C.-J.
,
Lindenberger
,
M.
,
Länne
,
T.
,
Ebbers
,
T.
, and
Dyverfeldt
,
P.
,
2018
, “
Age-Related Vascular Changes Affect Turbulence in Aortic Blood Flow
,”
Front. Physiol.
,
9
, p.
36
.10.3389/fphys.2018.00036
30.
Layton
,
W. J.
, and
Rebholz
,
L. G.
,
2012
,
Approximate Deconvolution Models of Turbulence: Analysis, Phenomenology and Numerical Analysis
, Vol.
2042
,
Springer Science & Business Media
,
Berlin
.
31.
Bertagna
,
L.
,
Deparis
,
S.
,
Formaggia
,
L.
,
Forti
,
D.
, and
Veneziani
,
A.
,
2017
, “
The Lifev Library: Engineering Mathematics Beyond the Proof of Concept
,” arXiv preprint:
1710.06596
.https://arxiv.org/abs/1710.06596#:~:text=The%20LifeV%20library%3A%20engineering%20mathematics%20beyond%20the%20proof%20of%20concept,-Luca%20Bertagna%2C%20Simone&text=In%20spite%20of%20its%20academic,tool%20for%20many%20engineering%20applications
32.
Antiga
,
L.
,
Piccinelli
,
M.
,
Botti
,
L.
,
Ene-Iordache
,
B.
,
Remuzzi
,
A.
, and
Steinman
,
D. A.
,
2008
, “
An Image-Based Modeling Framework for Patient-Specific Computational Hemodynamics
,”
Med. Biol. Eng. Comput.
,
46
(
11
), pp.
1097
1112
.10.1007/s11517-008-0420-1
33.
Myronenko
,
A.
, and
Song
,
X.
,
2010
, “
Point Set Registration: Coherent Point Drift
,”
IEEE Trans Pattern Anal Mach. Intell.
,
32
(
12
), pp.
2262
2275
.10.1109/TPAMI.2010.46
34.
Cheng
,
Z.
,
Tan
,
F.
,
Riga
,
C.
,
Bicknell
,
C.
,
Hamady
,
M.
,
Gibbs
,
R.
,
Wood
,
N.
, and
Xu
,
X.
,
2010
, “
Analysis of Flow Patterns in a Patient-Specific Aortic Dissection Model
,”
ASME J. Biomech. Eng.
,
132
(
5
), p.
051007
.10.1115/1.4000964
35.
Pibarot
,
P.
,
Blais
,
C.
,
Dumesnil
,
J. G.
,
Burwash
,
I. G.
,
Beanlands
,
R. S.
,
Mundigler
,
G.
,
Loho
,
N.
,
Rader
,
F.
,
Baumgartner
,
H.
,
Chayer
,
B.
,
Kadem
,
L.
,
Garcia
,
D.
, and
Durand
,
L.-G.
,
2006
, “
Projected Valve Area at Normal Flow Rate Improves the Assessment of Stenosis Severity in Patients With Low-Flow, Low-Gradient Aortic Stenosis: The Multicenter Topas (Truly or Pseudo-Severe Aortic Stenosis) Study-Response
,”
Circulation
,
114
(
14
), pp.
E527
E527
.10.1161/CIRCULATIONAHA.105.557678
36.
Boussel
,
L.
,
Rayz
,
V.
,
McCulloch
,
C.
,
Martin
,
A.
,
Acevedo-Bolton
,
G.
,
Lawton
,
M.
,
Higashida
,
R.
,
Smith
,
W. S.
,
Young
,
W. L.
, and
Saloner
,
D.
,
2008
, “
Aneurysm Growth Occurs at Region of Low Wall Shear Stress Patient-Specific Correlation of Hemodynamics and Growth in a Longitudinal Study
,”
Stroke
,
39
(
11
), pp.
2997
3002
.10.1161/STROKEAHA.108.521617
37.
den Reijer
,
P. M.
,
Sallee
,
D.
,
van der Velden
,
P.
,
Zaaijer
,
E. R.
,
Parks
,
W. J.
,
Ramamurthy
,
S.
,
Robbie
,
T. Q.
,
Donati
,
G.
,
Lamphier
,
C.
,
Beekman
,
R. P.
, and
Brummer
,
M. E.
,
2010
, “
Hemodynamic Predictors of Aortic Dilatation in Bicuspid Aortic Valve by Velocity-Encoded Cardiovascular Magnetic Resonance
,”
J. Cardiovasc. Magn. Reson.
,
12
(
1
), p.
4
.10.1186/1532-429X-12-4
38.
Chen
,
D.
,
Müller-Eschner
,
M.
,
Kotelis
,
D.
,
Böckler
,
D.
,
Ventikos
,
Y.
, and
von Tengg-Kobligk
,
H.
,
2013
, “
A Longitudinal Study of Type-b Aortic Dissection and Endovascular Repair Scenarios: Computational Analyses
,”
Med. Eng. Amp Phys.
,
35
(
9
), pp.
1321
1330
.10.1016/j.medengphy.2013.02.006
39.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Aeterioscler. Thromb. Vasc. Biol.
,
5
(
3
), pp.
293
302
.10.1161/01.atv.5.3.293
40.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
2003
,
Stochastic Finite Elements: A Spectral Approach
,
Courier Corporation
,
Chelmsford, MA
.
41.
Sudret
,
B.
,
2007
, “
Uncertainty Propagation and Sensitivity Analysis in Mechanical Models–Contributions to Structural Reliability and Stochastic Spectral Methods
,”
Habilitationa Diriger Des Recherches
,
Université Blaise Pascal
,
Clermont-Ferrand, France
.
42.
Sobol
,
I. M.
,
1993
, “
Sensitivity Estimates for Nonlinear Mathematical Models
,”
Math. Modell. Comput. Exp.
,
1
(
4
), pp.
407
414
.https://scinapse.io/papers/102464277
43.
Sobol
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1–3
), pp.
271
280
.10.1016/S0378-4754(00)00270-6
44.
Najm
,
H. N.
,
2009
, “
Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
35
52
.10.1146/annurev.fluid.010908.165248
45.
Cameron
,
R. H.
, and
Martin
,
W. T.
,
1947
, “
The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals
,”
Ann. Math.
,
48
(
2
), pp.
385
392
.10.2307/1969178
46.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2003
, “
Modeling Uncertainty in Flow Simulations Via Generalized Polynomial Chaos
,”
J. Comput. Phys.
,
187
(
1
), pp.
137
167
.10.1016/S0021-9991(03)00092-5
47.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.10.2307/2371268
48.
Bäck
,
J.
,
Nobile
,
F.
,
Tamellini
,
L.
, and
Tempone
,
R.
,
2011
, “
Stochastic Spectral Galerkin and Collocation Methods for Pdes With Random Coefficients: A Numerical Comparison
,”
In Spectral and High Order Methods for Partial Differential Equations
,
Springer
,
Springer, Berlin
, pp.
43
62
.
49.
Hosder
,
S.
,
Walters
,
R.
, and
Perez
,
R.
,
2006
, “
A Non-Intrusive Polynomial Chaos Method for Uncertainty Propagation in Cfd Simulations
,”
AIAA
Paper No. AIAA 2006-891.10.2514/6.2006-891
50.
Gottlieb
,
D.
, and
Orszag
,
S. A.
,
1977
,
Numerical Analysis of Spectral Methods: Theory and Applications
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
51.
Smith
,
R. C.
,
2013
,
Uncertainty Quantification: Theory, Implementation, and Applications
, Vol.
12
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
52.
Feinberg
,
J.
,
2015
, “
Some Improvements and Applications of Non-Intrusive Polynomial Chaos Expansions
,”
Ph.D. thesis
,
University of Oslo
,
Oslo, Norway
.https://www.semanticscholar.org/paper/Some-Improvements-and-Applications-of-Non-intrusive-Feinberg/ffa4afeff959a956735f20e1d50e7a7f36acf5d9
53.
Feinberg
,
J.
, and
Langtangen
,
H. P.
,
2015
, “
Chaospy: An Open Source Tool for Designing Methods of Uncertainty Quantification
,”
J. Comput. Sci.
,
11
, pp.
46
57
.10.1016/j.jocs.2015.08.008
54.
Blatman
,
G.
, and
Sudret
,
B.
,
2011
, “
Adaptive Sparse Polynomial Chaos Expansion Based on Least Angle Regression
,”
J. Comput. Phys.
,
230
(
6
), pp.
2345
2367
.10.1016/j.jcp.2010.12.021
55.
Quicken
,
S.
,
Donders
,
W. P.
,
van Disseldorp
,
E. M.
,
Gashi
,
K.
,
Mees
,
B. M.
,
van de Vosse
,
F. N.
,
Lopata
,
R. G.
,
Delhaas
,
T.
, and
Huberts
,
W.
,
2016
, “
Application of an Adaptive Polynomial Chaos Expansion on Computationally Expensive Three-Dimensional Cardiovascular Models for Uncertainty Quantification and Sensitivity Analysis
,”
ASME J. Biomech. Eng.
,
138
(
12
), p.
121010
.10.1115/1.4034709
You do not currently have access to this content.