Abstract

Though mechanical circulatory support (MCS) devices, such as ventricular assist devices and total artificial hearts (TAH), provide heart failure patients with bridges to heart transplantation or are alternatives to transplantation, device performance, and corresponding control strategies are often difficult to evaluate. Difficulties arise due to the complex interaction of multiple domains—i.e., biological, hydraulic, hemodynamics, electromechanical, system dynamics, and controls. In an attempt to organize, integrate and clarify these interactions, a technique often used in hydraulic pump design and robotics, called “bond graph modeling,” is applied to describe the performance and functionality of MCS devices and the interaction between the cardiovascular (CV) system and the MCS device. This technical brief demonstrates the advantages of this tool in formulating a model for the systemic circulation interacting with the left side of a TAH, adopting the fundamental structure of either a hydraulic mechanism (i.e., AbioCor/Carmat) or a pneumatic mechanism (i.e., SynCardia), combined with a systemic circulation loop. The model captures the dynamics of the membrane, the hydraulic source or pneumatic source, and the systemic circulation. This multidisciplinary cross-pollination of an analytical tool from the field of dynamic systems may provide important insight to further aid and improve the design and control of future MCS systems.

References

1.
Paynter
,
H. M.
,
1961
,
Analysis and Design of Engineering Systems
,
MIT Press
,
Cambridge, MA
.
2.
 
Karnopp
,
D.
, and
Rosenberg
,
R. C.
,
1968
, “
Analysis and Simulation of Multiport Systems: The Bond Graph Approach to Physical System Dynamics
,” MIT Press, Cambridge, MA.
3.
Bai
,
J.
,
Ying
,
K.
, and
Jaron
,
D.
,
1992
, “
Cardiovascular Responses to External Counterpulsation: A Computer Simulation
,”
Med. Biol. Eng. Comput.
,
30
(
3
), pp.
317
323
.10.1007/BF02446970
4.
De Lazzari
,
C.
,
Ferrari
,
G.
,
Mimmo
,
R.
,
Tosti
,
G.
, and
Ambrosi
,
D.
,
1994
, “
A Desk-Top Computer Model of the Circulatory System for Heart Assistance Simulation: Effect of an LVAD on Energetic Relationships Inside the Left Ventricle
,”
Med. Eng. Phys.
,
16
(
2
), pp.
97
103
.10.1016/1350-4533(94)90022-1
5.
Xu
,
L.
, and
Fu
,
M.
,
2000
, “
Computer Modeling of Interactions of an Electric Motor, Circulatory System, and Rotary Blood Pump
,”
ASAIO J.
,
46
(
5
), pp.
604
611
.10.1097/00002480-200009000-00020
6.
Ferreira
,
A.
,
Chen
,
S.
,
Simaan
,
M. A.
,
Boston
,
J.
, and
Antaki
,
J. F.
,
2005
, “
A Nonlinear State-Space Model of a Combined Cardiovascular System and a Rotary Pump
,”
Proceedings of the 44th IEEE Conference on Decision and Control
, Seville, Spain, Dec. 12–15,
IEEE
, pp.
897
902
.10.1109/CDC.2005.1582271
7.
Simaan
,
M. A.
,
Ferreira
,
A.
,
Chen
,
S.
,
Antaki
,
J. F.
, and
Galati
,
D. G.
,
2009
, “
A Dynamical State Space Representation and Performance Analysis of a Feedbackcontrolled Rotary Left Ventricular Assist Device
,”
IEEE Trans. Control Syst. Technol.
,
17
(
1
), pp.
15
28
.10.1109/TCST.2008.912123
8.
Santamore
,
W. P.
, and
Burkhoff
,
D.
,
1991
, “
Hemodynamic Consequences of Ventricular Interaction as Assessed by Model Analysis
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
260
(
1
), pp.
H146
H157
.10.1152/ajpheart.1991.260.1.H146
9.
Klute
,
G.
,
Tasch
,
U.
, and
Geselowitz
,
D.
,
1992
, “
An Optimal Controller for an Electric Ventricular-Assist Device: Theory, Implementation, and Testing
,”
IEEE Trans. Biomed. Eng.
,
39
(
4
), pp.
394
403
.10.1109/10.126612
10.
Tsach
,
U.
,
Geselowitz
,
D.
,
Sinha
,
A.
, and
Hsu
,
H.
,
1989
, “
A Novel Output Feedback Pusher Plate Controller for the Penn State Electric Ventricular Assist Device
,”
ASME J. Dyn. Syst. Meas. Control
,
111
(
1
), pp.
69
74
.10.1115/1.3153020
11.
Slepian
,
M. J.
,
Alemu
,
Y.
,
Soares
,
J. S.
,
Smith
,
R. G.
,
Einav
,
S.
, and
Bluestein
,
D.
,
2013
, “
The syncardiaTM Total Artificial Heart: In Vivo, In Vitro, and Computational Modeling Studies
,”
J. Biomech.
,
46
(
2
), pp.
266
275
.10.1016/j.jbiomech.2012.11.032
12.
 
Mohacsi
,
P.
, and
Leprince
,
P.
,
2014
, “
The Carmat Total Artificial Heart
,”
Eur. J. Cardiothorac. Surg.
,
46
(6), pp. 933–934.10.1093/ejcts/ezu333
13.
Lankhaar
,
J.-W.
,
R¨Ovekamp
,
F. A.
,
Steendijk
,
P.
,
Faes
,
T. J.
,
Westerhof
,
B. E.
,
Kind
,
T.
,
Vonk-Noordegraaf
,
A.
, and
Westerhof
,
N.
,
2009
, “
Modeling the Instantaneous Pressure–Volume Relation of the Left Ventricle: A Comparison of Six Models
,”
Ann. Biomed. Eng.
,
37
(
9
), pp.
1710
1726
.10.1007/s10439-009-9742-x
14.
Yu
,
Y.-C.
,
Boston
,
J. R.
,
Simaan
,
M. A.
, and
Antaki
,
J. F.
,
1998
, “
Estimation of Systemic Vascular Bed Parameters for Artificial Heart Control
,”
IEEE Trans. Autom. Control
,
43
(
6
), pp.
765
778
.10.1109/9.679017
You do not currently have access to this content.