Abstract

We study the vibration modes of a short section in the middle turn of the gerbil cochlea including both longitudinal and radial interstitial fluid spaces between the pillar cells (PC) and the sensory hair cells to determine the role of the interstitial fluid flow within the organ of corti (OoC). Three detailed finite element (FE) models of the cochlear short section (CSS) are studied. In model 1, the CSS is without fluids; model 2 includes the OoC fluid, but not the exterior scalae fluids; and model 3 is the CSS with both scalae and OoC fluids. We find that: (1) the fundamental mode shape of models 1 or 3 is similar to the classical basilar membrane (BM) bending mode that includes pivoting of the arch of corti, and hence determines the low frequency vibrational mode shape of the cochlea in the presence of the cochlear wave. (2) The fundamental mode shape of model 2 is characterized by a cross-sectional shape change similar to the passive response of the cochlea. This mode shape includes a tilting motion of the inner hair cell (IHC) region, a fluid motion within the tunnel of corti (ToC) in the radial direction and along the OoC, and a bulging motion of the reticular lamina (RL) above the outer hair cell (OHC). Each of these motions provides a plausible mode of excitation of the sensory hair cells. (3) The higher vibrational modes of model 1 are similar to the electrically evoked response within the OoC and suggests that the higher vibrational modes are responsible for the active response of the cochlea. We also observed that the fluid flow through the OoC interstitial space is significant, and the model comparison suggests that the OoC fluid contributes to the biphasic BM motion seen in electrical stimulation experiments. The effect of fluid viscosity on cilium deflection was assessed by performing a transient analysis to calculate the cilium shearing gain. The gain values are found to be within the range of experimentally measured values reported by Dallos et al. (1996, The Cochlea, Springer-Verlag, New York).

References

1.
Lin
,
T.
, and
Guinan
,
J. J.
,
2000
, “
Auditory-Nerve-Fiber Responses to High-Level Clicks: Interference Patterns Indicate That Excitation is Due to the Combination of Multiple Drives
,”
J. Acoust. Soc. Am.
,
107
(
5
), pp.
2615
2630
.10.1121/1.428648
2.
Mountain
,
D.
, and
Cody
,
A. R.
,
1999
, “
Multiple Modes of Inner Hair Cell Stimulation
,”
Hear. Res.
,
132
(
1–2
), pp.
1
14
.10.1016/S0378-5955(99)00013-1
3.
Hubbard
,
A. E.
,
1993
, “
A Traveling-Wave Amplifier Model of the Cochlea
,”
Science
,
259
(
5091
), pp.
68
71
.10.1126/science.8418496
4.
Karavitaki
,
K. D.
, and
Mountain
,
D. C.
,
2007
, “
Evidence for Outer Hair Cell Driven Oscillatory Fluid Flow in the Tunnel of Corti
,”
Biophys. J.
,
92
(
9
), pp.
3284
3393
.10.1529/biophysj.106.084087
5.
Zagadou
,
B. F.
, and
Mountain
,
D. C.
,
2012
, “
Analysis of the Cochlear Amplifier Fluid Pump Hypothesis
,”
J. Assoc. Res. Otolaryngol.
,
13
(
2
), pp.
185
197
.10.1007/s10162-011-0308-x
6.
Steele
,
C. R.
,
1999
, “
Toward, Three-Dimensional Analysis of Cochlear Structure
,”
ORL J. Otorhinolaryngol. Relat. Spec.
,
61
(
5
), pp.
238
251
.10.1159/000027681
7.
Cai
,
H.
, and
Chadwick
,
R.
,
2003
, “
Radial Structure of Traveling Waves in the Inner Ear
,”
J. Appl. Math.
,
63
(
4
), pp.
1105
1120
.10.1137/S0036139901388957
8.
Meaud
,
J.
, and
Grosh
,
K.
,
2010
, “
The Effect of Tectorial Membrane and Basilar Membrane Longitudinal Coupling in Cochlear Mechanics
,”
J. Acoust. Soc. Am.
,
127
(
3
), pp.
1411
1421
.10.1121/1.3290995
9.
Nam
,
J.
,
2014
, “
Microstructures in the Organ of Corti Help Outer Hair Cells Form Traveling Waves Along the Cochlear Coil
,”
Biophys. J.
,
106
(
11
), pp.
2426
2433
.10.1016/j.bpj.2014.04.018
10.
Ni
,
G.
,
Elliot
,
S. J.
, and
Baumgart
,
J.
,
2016
, “
Finite-Element Model of the Organ of Corti
,”
J. R. Soc. Interface
,
13
(
115
), p.
20150913
.10.1098/rsif.2015.0913
11.
Andoh
,
M.
, and
Wada
,
H.
,
2004
, “
Prediction of the Characteristics of Two Types of Pressure Waves in the Cochlea: Theoretical Considerations
,”
J. Acoust. Soc. Am.
,
116
(
1
), pp.
417
425
.10.1121/1.1763599
12.
Zagadou
,
B. F.
,
Barbone
,
P. E.
, and
Mountain
,
D. C.
,
2014
, “
Elastic Properties of Organ of Corti Tissues From Point-Stiffness Measurement and Inverse Analysis
,”
J. Biomech.
,
47
(
6
), pp.
1270
1277
.10.1016/j.jbiomech.2014.02.025
13.
Naidu
,
R. C.
, and
Mountain
,
D. C.
,
2001
, “
Longitudinal Coupling in the Basilar Membrane
,”
J. Assoc. Res. Otolaryngol.
,
2
(
3
), pp.
257
267
.10.1007/s101620010013
14.
Bathe
,
K. J.
,
1986
, “
Adina
,” Adina R&D, Watertown, MA, http://www.adina.com
15.
Bathe
,
K. J.
,
2012
, “
Theory and Modeling Guide: Adina
,” Adina R&D, Inc., Watertown, MA, Report No. 1 (
ARD 12-8
).http://www.adina.com/adinadownloads/docs/tmg-a_89.pdf
16.
Olson
,
L. G.
, and
Bathe
,
K. J.
,
1985
, “
Analysis of Fluid-Structure Interactions. A Direct Symmetric Coupled Formulation Based on the Fluid Velocity Potential
,”
J. Comput. Struct.
,
21
(
1–2
), pp.
21
32
.10.1016/0045-7949(85)90226-3
17.
Karavitaki
,
K. D.
, and
Mountain
,
D. C.
,
2007
, “
Imaging Electrically Evoked Micromechanical Motion Within the Organ of Corti of the Excised Gerbil Cochlea
,”
Biophys. J.
,
92
, pp.
3294
3316
.10.1529/biophysj.106.083634
18.
Karavitaki
,
K. D.
,
2002
, “
Measurements and Models of Electrically-Evoked Motion in the Gerbil Organ of Corti
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
, Cambridge, MA.https://www.researchgate.net/publication/34758366_Measurements_and_models_of_electrically-evoked_motion_in_the_gerbil_organ_of_Corti
19.
Dallos
,
P.
,
Popper
,
A. N.
, and
Fay
,
R. R.
,
1996
,
The Cochlea
,
Springer-Verlag
,
New York
.
20.
Sellick
,
P. M.
,
Patuzzi
,
R. B.
, and
Johnstone
,
B. M.
,
1982
, “
Measurement of Basilar Membrane Motion in the guinea-Pig Using the Mossbauer Technique
,”
J. Acoust. Soc. Am.
,
72
(
1
), pp.
131
141
.10.1121/1.387996
21.
Cody
,
A.
, and
Johnstone
,
B. M.
,
1980
, “
Single Auditory Neuron Response During Acute Acoustic Trauma
,”
Hear. Res.
,
3
(
1
), pp.
3
16
.10.1016/0378-5955(80)90004-0
22.
Cody
,
A.
, and
Johnstone
,
B. M.
,
1981
, “
Acoustic Trauma: Single Neuron Basis for the ‘Half-Octave’ Shift
,”
J. Acoust. Soc. Am.
,
70
(
3
), pp.
707
711
.10.1121/1.386906
23.
Muller
,
M.
,
1996
, “
The Cochlear Place-Frequency Map of the Adult and Developing Mongolian Gerbil
,”
Hear. Res.
,
94
, pp.
148
156
.10.1016/0378-5955(95)00230-8
24.
Nowotny
,
M.
, and
Gummer
,
A. W.
,
2011
, “
Vibration Responses of the Organ of Corti and the Tectorial Membrane to Electrical Stimulation
,”
J. Acoust. Soc. Am.
,
130
(
6
), pp.
3852
3872
.10.1121/1.3651822
25.
Wang
,
Y.
,
Steele
,
C. R.
, and
Puria
,
S.
,
2016
, “
Cochlear Outer-Hair-Cell Power Generation and Viscous Fluid Loss
,”
Nature
,
6
, p.
19475
.10.1038/srep19475
26.
Sasmal
,
A.
, and
Grosh
,
K.
,
2019
, “
Unified Cochlear Model for Low- and High-Frequency Mammalian Hearing
,”
Proc. Natl. Acad. Sci. U. S. A
,
116
(
28
), pp.
13983
13988
.10.1073/pnas.1900695116
27.
Motallebzadeh
,
H.
,
Soons
,
J. A. M.
, and
Puria
,
S.
,
2018
, “
Cochlear Amplification and Tuning Depend on the Cellular Arrangement Within the Organ of Corti
,”
Proc. Natl. Acad. Sci. U. S. A
,
115
(
22
), pp.
5762
5767
.10.1073/pnas.1720979115
28.
Prodanovic
,
S.
,
Gracewski
,
S. M.
, and
Nam
,
J. H.
,
2019
, “
Power Dissipation in the Cochlea Can Enhance Frequency Selectivity
,”
Biophys. J.
,
116
(
7
), pp.
1
14
. 10.1016/j.bpj.2019.02.022
29.
Lighthill
,
J.
,
1991
, “
Biomechanics of Hearing Sensitivity
,”
ASME J. Vib. Acoust.
,
133
, pp.
1
13
.10.1115/1.2930149
30.
Ghaffari
,
R.
,
Aranyosi
,
A. J.
, and
Freeman
,
D. M.
,
2007
, “
Longitudinally Propagating Travelling Waves of the Mammalian Tectorial Membrane
,”
Proc. Natl. Acad. Sci. U.S.A
,
104
(
42
), pp.
16510
16515
.10.1073/pnas.0703665104
You do not currently have access to this content.