Abstract

Dynamic, in vivo evaluations of knee mechanics are important for understanding knee injury and repair, and developing successful treatments. Computational models have been used with in vivo experiments to quantify joint mechanics, but they are typically not predictive. The current study presents a novel integrated approach with high-speed stereo radiography, musculoskeletal modeling, and finite element (FE) modeling for evaluation of subject-specific, in vivo knee mechanics in a healthy subject performing a seated knee extension and weight-bearing lunge. Whole-body motion capture, ground reaction forces, and radiography-based kinematics were used to drive musculoskeletal and predictive FE models for load-controlled simulation of in vivo knee mechanics. A predictive simulation of knee mechanics was developed in four stages: (1) in vivo measurements of one subject performing a lunge and a seated knee extension, (2) rigid-body musculoskeletal modeling to determine muscle forces, (3) FE simulation of knee extension for knee-ligament calibration, and (4) predictive FE simulation of a lunge. FE models predicted knee contact and ligament mechanics and evaluated the impact of cruciate ligament properties on joint kinematics and loading. Calibrated model kinematics demonstrated good agreement to the experimental motion with root-mean-square differences of tibiofemoral flexion–extension <3 deg, internal–external <4 deg, and anterior–posterior <2 mm. Ligament reference strain and attachment locations were the most critical properties in the calibration process. The current work advances previous in vivo knee modeling through simulation of dynamic activities, modeling of subject-specific knee behavior, and development of a load-controlled knee model.

References

References
1.
Nguyen
,
U.-S. D. T.
,
Zhang
,
Y.
,
Zhu
,
Y.
,
Niu
,
J.
,
Zhang
,
B.
, and
Felson
,
D. T.
,
2011
, “
Increasing Prevalence of Knee Pain and Symptomatic Knee Osteoarthritis: Survey and Cohort Data
,”
Ann. Intern. Med.
,
155
(
11
), pp.
725
732
.10.7326/0003-4819-155-11-201112060-00004
2.
Kurtz
,
S.
,
Ong
,
K.
,
Lau
,
E.
,
Mowat
,
F.
, and
Halpern
,
M.
,
2007
, “
Projections of Primary and Revision Hip and Knee Arthroplasty in the United States From 2005 to 2030
,”
J. Bone Jt. Surg. Am.
,
89
(
4
), pp.
780
785
.10.2106/JBJS.F.00222
3.
Ali
,
A. A.
,
Shalhoub
,
S. S.
,
Cyr
,
A. J.
,
Fitzpatrick
,
C. K.
,
Maletsky
,
L. P.
,
Rullkoetter
,
P. J.
, and
Shelburne
,
K. B.
,
2016
, “
Validation of Predicted Patellofemoral Mechanics in a Finite Element Model of the Healthy and Cruciate-Deficient Knee
,”
J. Biomech.
,
49
(
2
), pp.
302
309
.10.1016/j.jbiomech.2015.12.020
4.
Baldwin
,
M. A.
,
Clary
,
C. W.
,
Fitzpatrick
,
C. K.
,
Deacy
,
J. S.
,
Maletsky
,
L. P.
, and
Rullkoetter
,
P. J.
,
2012
, “
Dynamic Finite Element Knee Simulation for Evaluation of Knee Replacement Mechanics
,”
J. Biomech.
,
45
(
3
), pp.
474
483
.10.1016/j.jbiomech.2011.11.052
5.
Halloran
,
J. P.
,
Clary
,
C. W.
,
Maletsky
,
L. P.
,
Taylor
,
M.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
,
2010
, “
Verification of Predicted Knee Replacement Kinematics During Simulated Gait in the Kansas Knee Simulator
,”
ASME J. Biomech. Eng.
,
132
(
8
), p.
081010
.10.1115/1.4001678
6.
Godest
,
A.-C.
,
Simonis de Cloke
,
C.
,
Taylor
,
M.
,
Gregson
,
P. J.
,
Keane
,
A. J.
,
Sathasivan
,
S.
, and
Walker
,
P. S.
,
2000
, “
A Computational Model for the Prediction of Total Knee Replacement Kinematics in the Sagittal Plane
,”
J. Biomech.
,
33
(
4
), pp.
435
442
.10.1016/S0021-9290(99)00183-9
7.
Beillas
,
P.
,
Papaioannou
,
G.
,
Tashman
,
S.
, and
Yang
,
K. H.
,
2004
, “
A New Method to Investigate In Vivo Knee Behavior Using a Finite Element Model of the Lower Limb
,”
J. Biomech.
,
37
(
7
), pp.
1019
1030
.10.1016/j.jbiomech.2003.11.022
8.
Fernandez
,
J. W.
,
Akbarshahi
,
M.
,
Kim
,
H. J.
, and
Pandy
,
M. G.
,
2008
, “
Integrating Modelling, Motion Capture and X-Ray Fluoroscopy to Investigate Patellofemoral Function During Dynamic Activity
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
1
), pp.
41
53
.10.1080/10255840701551046
9.
Shelburne
,
K. B.
,
Kim
,
H. J.
,
Sterett
,
W. I.
, and
Pandy
,
M. G.
,
2011
, “
Effect of Posterior Tibial Slope on Knee Biomechanics During Functional Activity
,”
J. Orthop. Res.
,
29
(
2
), pp.
223
231
.10.1002/jor.21242
10.
Adouni
,
M.
, and
Shirazi‐Adl
,
A.
,
2014
, “
Evaluation of Knee Joint Muscle Forces and Tissue Stresses‐Strains During Gait in Severe OA Versus Normal Subjects
,”
J. Orthop. Res.
,
32
(
1
), pp.
69
78
.10.1002/jor.22472
11.
Ivester
,
J. C.
,
Cyr
,
A. J.
,
Harris
,
M. D.
,
Kulis
,
M. J.
,
Rullkoetter
,
P. J.
, and
Shelburne
,
K. B.
,
2015
, “
A Reconfigurable High-Speed Stereo-Radiography System for Sub-Millimeter Measurement of In Vivo Joint Kinematics
,”
ASME J. Med. Devices
,
9
(
4
), p.
041009
.10.1115/1.4030778
12.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System of the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
13.
Navacchia
,
A.
,
Myers
,
C. A.
,
Rullkoetter
,
P. J.
, and
Shelburne
,
K. B.
,
2016
, “
Prediction of In Vivo Knee Joint Loads Using a Global Probabilistic Analysis
,”
ASME J. Biomech. Eng.
,
138
(
3
), p.
4032379
.10.1115/1.4032379
14.
Fitzpatrick
,
C. K.
,
Baldwin
,
M. A.
, and
Rullkoetter
,
P. J.
,
2010
, “
Computationally Efficient Finite Element Evaluation of Natural Patellofemoral Mechanics
,”
ASME J. Biomech. Eng.
,
132
(
12
), p.
121013
.10.1115/1.4002854
15.
Navacchia
,
A.
,
Kefala
,
V.
, and
Shelburne
,
K. B.
,
2017
, “
Dependence of Muscle Moment Arms on In Vivo Three-Dimensional Kinematics of the Knee
,”
Ann. Biomed. Eng.
,
45
(
3
), pp.
789
798
.10.1007/s10439-016-1728-x
16.
DeMers
,
M. S.
,
Pal
,
S.
, and
Delp
,
S. L.
,
2014
, “
Changes in Tibiofemoral Forces Due to Variations in Muscle Activity During Walking
,”
J. Orthop. Res.
,
32
(
6
), pp.
769
776
.10.1002/jor.22601
17.
Harris
,
M. D.
,
Cyr
,
A. J.
,
Ali
,
A. A.
,
Fitzpatrick
,
C. K.
,
Rullkoetter
,
P. J.
,
Maletsky
,
L. P.
, and
Shelburne
,
K. B.
,
2016
, “
A Combined Experimental and Computational Approach to Subject-Specific Analysis of Knee Joint Laxity
,”
ASME J. Biomech. Eng.
,
138
(
8
), p.
081004
.10.1115/1.4033882
18.
Sibole
,
S.
,
Bennetts
,
C.
,
Borotikar
,
B.
,
Maas
,
S.
,
van den Bogert
,
A. J.
,
Weiss
,
J. A.
, and
Erdemir
,
A.
,
2010
, “
Open Knee: A 3D Finite Element Representation of the Knee Joint
,”
34th Annual Meeting of the American Society of Biomechanics
, Providence, RI, Aug. 18, pp.
152
153
.
19.
Yao
,
J.
,
Snibbe
,
J.
,
Maloney
,
M.
, and
Lerner
,
A. L.
,
2006
, “
Stresses and Strains in the Medial Meniscus of an ACL Deficient Knee Under Anterior Loading: A Finite Element Analysis With Image-Based Experimental Validation
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
135
141
.10.1115/1.2132373
20.
Erdemir
,
A.
,
2016
, “
Open Knee: Open Source Modeling and Simulation in Knee Biomechanics
,”
J. Knee Surg.
,
29
(
2
), pp.
107
116
.10.1055/s-0035-1564600
21.
Baldwin
,
M. A.
,
Clary
,
C.
,
Maletsky
,
L. P.
, and
Rullkoetter
,
P. J.
,
2009
, “
Verification of Predicted Specimen-Specific Natural and Implanted Patellofemoral Kinematics During Simulated Deep Knee Bend
,”
J. Biomech.
,
42
(
14
), pp.
2341
2348
.10.1016/j.jbiomech.2009.06.028
22.
Staubli
,
H. U.
,
Schatzmann
,
L.
,
Brunner
,
P.
,
Rincón
,
L.
, and
Nolte
,
L. P.
,
1999
, “
Mechanical Tensile Properties of the Quadriceps Tendon and Patellar Ligament in Young Adults
,”
Am. J. Sports Med.
,
27
(
1
), pp.
27
34
.10.1177/03635465990270011301
23.
Hume
,
D. R.
,
Navacchia
,
A.
,
Ali
,
A. A.
, and
Shelburne
,
K. B.
,
2018
, “
The Interaction of Muscle Moment Arm, Knee Laxity, and Torque in a Multi-Scale Musculoskeletal Model of the Lower Limb
,”
J. Biomech.
,
25
, pp.
173
180
.10.1016/j.jbiomech.2018.05.030
24.
Ettema
,
G. J.
, and
Huijing
,
P. A.
,
1994
, “
Effects of Distribution of Muscle Fiber Length on Active Length‐Force Characteristics of Rat Gastrocnemius Medialis
,”
Anat. Rec.
,
239
(
4
), pp.
414
420
.10.1002/ar.1092390408
25.
Herzog
,
W.
, and
ter Keurs
,
H. E.
,
1988
, “
Force-Length Relation of In-Vivo Human Rectus Femoris Muscles
,”
Pflügers Arch.
,
411
(
6
), pp.
642
647
.10.1007/BF00580860
26.
Horsman
,
M. K.
,
Koopman
,
H. F.
,
van der Helm
,
F. C.
,
Prosé
,
L. P.
, and
Veeger
,
H. E.
,
2007
, “
Morphological Muscle and Joint Parameters for Musculoskeletal Modelling of the Lower Extremity
,”
Clin. Biomech.
,
22
(
2
), pp.
239
247
.10.1016/j.clinbiomech.2006.10.003
27.
Amis
,
A. A.
, and
Farahmand
,
F.
,
1996
, “
Recent Advances in Surgery of the Patello-Femoral Joint and Extensor Apparatus
,”
Knee
,
3
(
1–2
), pp.
73
105
.10.1016/0968-0160(96)00212-8
28.
Fitzpatrick
,
C. K.
,
Komistek
,
R. D.
, and
Rullkoetter
,
P. J.
,
2014
, “
Developing Simulations to Reproduce In Vivo Fluoroscopy Kinematics in Total Knee Replacement Patients
,”
J. Biomech.
,
47
(
10
), pp.
2398
2405
.10.1016/j.jbiomech.2014.04.024
29.
Woo
,
S. L.-Y.
,
Hollis
,
J. M.
,
Adams
,
D. J.
,
Lyon
,
R. M.
, and
Takai
,
S.
,
1991
, “
Tensile Properties of the Human Femur-Anterior Cruciate Ligament-Tibia Complex. The Effects of Specimen Age and Orientation
,”
Am. J. Sports Med.
,
19
(
3
), pp.
217
225
.10.1177/036354659101900303
30.
Race
,
A.
, and
Amis
,
A. A.
,
1994
, “
The Mechanical Properties of the Two Bundles of the Human Posterior Cruciate Ligament
,”
J. Biomech.
,
27
(
1
), pp.
13
24
.10.1016/0021-9290(94)90028-0
31.
Kefala
,
V.
,
Cyr
,
A. J.
,
Harris
,
M. D.
,
Hume
,
D. R.
,
Davidson
,
B. S.
,
Kim
,
R. H.
, and
Shelburne
,
K. B.
,
2017
, “
Assessment of Knee Kinematics in Older Adults Using High-Speed Stereo Radiography
,”
Med. Sci. Sports Exerc.
,
49
(
11
), pp.
2260
2267
.10.1249/MSS.0000000000001350
32.
Guess
,
T. M.
,
Thiagarajan
,
G.
,
Kia
,
M.
, and
Mishra
,
M.
,
2010
, “
A Subject Specific Multibody Model of the Knee With Menisci
,”
Med. Eng. Phys.
,
32
(
5
), pp.
505
515
.10.1016/j.medengphy.2010.02.020
33.
Shelburne
,
K. B.
, and
Pandy
,
M. G.
,
1997
, “
A Musculoskeletal Model of the Knee for Evaluating Ligament Forces During Isometric Contractions
,”
J. Biomech.
,
30
(
2
), pp.
163
176
.10.1016/S0021-9290(96)00119-4
34.
Zheng
,
N.
,
Fleisig
,
G. S.
,
Escamilla
,
R. F.
, and
Barrentine
,
S. W.
,
1998
, “
An Analytical Model of the Knee for Estimation of Internal Forces During Exercise
,”
J. Biomech.
,
31
(
10
), pp.
963
967
.10.1016/S0021-9290(98)00056-6
35.
Bergmann
,
G.
,
Bender
,
A.
,
Graichen
,
F.
,
Dymke
,
J.
,
Rohlmann
,
A.
,
Trepczynski
,
A.
,
Heller
,
M. O.
, and
Kutzner
,
I.
,
2014
, “
Standardized Loads Acting in Knee Implants
,”
PLoS One
,
9
(
1
), p.
e86035
.10.1371/journal.pone.0086035
You do not currently have access to this content.