Abstract

Due to the avascular nature of articular cartilage, molecular transport occurs via interstitial fluid flow as well as via diffusion. Diffusion in cartilage has been studied experimentally, but no mathematical models have been developed to interpret the experimental results and the observed isotropy or anisotropy in the different cartilage zones. Here, we propose a model for the determination of the diffusivity tensor of uncharged macromolecules in articular cartilage, accounting for the inhomogeneity and anisotropy arising from fiber arrangement, volumetric fraction, and radius. We study a representative element of volume (REV) comprising a fiber surrounded by fluid-saturated proteoglycan matrix. The REV permeability tensor is evaluated using a previously developed model, while the REV diffusivity tensor is obtained by incorporating the hydrodynamic effect and the steric effect of the fiber-reinforced matrix. Both effects are represented by anisotropic second-order tensors. The overall diffusivity tensor is obtained as the averaging integral of the REV diffusivity, weighted by the probability distribution of fiber orientation. The model's predictions of the trend of the magnitude of the diffusivity of spheroidal macromolecules as a function of molecular radius agree with published experimental results. For large linear macromolecules, the model underestimates the diffusivity magnitude (i.e., the equivalent isotropic diffusivity). The model correctly predicts the anisotropic behavior for linear macromolecules, although it underestimates the numerical value of the diffusivity anisotropy ratio of large linear macromolecules in the superficial zone, and overestimates it in the deep zone. In summary, this model constitutes a first step toward understanding the relation between diffusivity and permeability in articular cartilage.

References

1.
Li
,
L.
,
Soulhat
,
J.
,
Buschmann
,
M.
, and
Shirazi-Adl
,
A.
,
1999
, “
Nonlinear Analysis of Cartilage in Unconfined Ramp Compression Using a Fibril Reinforced Poroelastic Model
,”
Clin. Biomech.
,
14
(
9
), pp.
673
682
.10.1016/S0268-0033(99)00013-3
2.
Federico
,
S.
, and
Herzog
,
W.
,
2008
, “
Towards an Analytical Model of Soft Biological Tissues
,”
J. Biomech.
,
41
(
16
), pp.
3309
3313
.10.1016/j.jbiomech.2008.05.039
3.
Federico
,
S.
, and
Herzog
,
W.
,
2008
, “
On the Anisotropy and Inhomogeneity of Permeability in Articular Cartilage
,”
Biomech. Model. Mechanobiol.
,
7
(
5
), pp.
367
378
.10.1007/s10237-007-0091-0
4.
Federico
,
S.
, and
Grillo
,
A.
,
2012
, “
Elasticity and Permeability of Porous Fibre-Reinforced Materials Under Large Deformations
,”
Mech. Mater.
,
44
, pp.
58
71
.10.1016/j.mechmat.2011.07.010
5.
Pierce
,
D. M.
,
Ricken
,
T.
, and
Holzapfel
,
G. A.
,
2013
, “
A Hyperelastic Biphasic Fibre-Reinforced Model of Articular Cartilage Considering Distributed Collagen Fibre Orientations: Continuum Basis, Computational Aspects and Applications
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
12
), pp.
1344
1361
.10.1080/10255842.2012.670854
6.
Pierce
,
D.
,
Ricken
,
T.
, and
Holzapfel
,
G. A.
,
2013
, “
Modeling Sample/Patient-Specific Structural and Diffusional Responses of Cartilage Using DT-MRI
,”
Int. J. Numer. Methods Biomed. Eng.
,
29
(
8
), pp.
807
821
.10.1002/cnm.2524
7.
Tomic
,
A.
,
Grillo
,
A.
, and
Federico
,
S.
,
2014
, “
Poroelastic Materials Reinforced by Statistically Oriented Fibres—Numerical Implementation and Application to Articular Cartilage
,”
IMA J. Appl. Math.
,
79
(
5
), pp.
1027
1059
.10.1093/imamat/hxu039
8.
Pierce
,
D. M.
,
Unterberger
,
M. J.
,
Trobin
,
W.
,
Ricken
,
T.
, and
Holzapfel
,
G. A.
,
2016
, “
A Microstructurally Based Continuum Model of Cartilage Viscoelasticity and Permeability Incorporating Measured Statistical Fiber Orientations
,”
Biomech. Model. Mechanobiol.
,
15
(
1
), pp.
229
244
.10.1007/s10237-015-0685-x
9.
Maroudas
,
A.
,
Bullough
,
P.
,
Swanson
,
S.
, and
Freeman
,
M.
,
1968
, “
The Permeability of Articular Cartilage
,”
J. Bone Jt. Surg., Ser. B
,
50
(
1
), pp.
166
177
.10.1302/0301-620X.50B1.166
10.
Federico
,
S.
,
Grillo
,
A.
, and
Segev
,
R.
,
2016
, “
Material Description of Fluxes in Terms of Differential Forms
,”
Continuum Mech. Thermodyn.
,
28
(
1–2
), pp.
379
390
.10.1007/s00161-015-0437-2
11.
Reynaud
,
B.
, and
Quinn
,
T. M.
,
2006
, “
Anisotropic Hydraulic Permeability in Compressed Articular Cartilage
,”
J. Biomech.
,
39
(
1
), pp.
131
137
.10.1016/j.jbiomech.2004.10.015
12.
Leddy
,
H. A.
,
Haider
,
M. A.
, and
Guilak
,
F.
,
2006
, “
Diffusional Anisotropy in Collagenous Tissues: Fluorescence Imaging of Continuous Point Photobleaching
,”
Biophys. J.
,
91
(
1
), pp.
311
316
.10.1529/biophysj.105.075283
13.
Maroudas
,
A.
, and
Bullough
,
P.
,
1968
, “
Permeability of Articular Cartilage
,”
Nature
,
219
(
5160
), pp.
1260
1261
.10.1038/2191260a0
14.
Phillips
,
R.
,
Deen
,
W.
, and
Brady
,
J.
,
1989
, “
Hindered Transport of Spherical Macromolecules in Fibrous Membranes and Gels
,”
AIChE J.
,
35
(
11
), pp.
1761
1769
.10.1002/aic.690351102
15.
Phillips
,
R. J.
,
Deen
,
W. M.
, and
Brady
,
J. F.
,
1990
, “
Hindered Transport in Fibrous Membranes and Gels: Effect of Solute Size and Fiber Configuration
,”
J. Colloid Interface Sci.
,
139
(
2
), pp.
363
373
.10.1016/0021-9797(90)90110-A
16.
Brinkman
,
H.
,
1949
, “
A Calculation of the Viscous Force Exerted by a Flowing Fluid on a Dense Swarm of Particles
,”
Appl. Sci. Res.
,
1
(
1
), pp.
27
34
.10.1007/BF02120313
17.
Brady
,
J.
,
1994
, “
Hindered Diffusion
,”
Extended Abstracts, AIChE Annual Meeting
,
San Francisco, CA
, p.
320
.
18.
Johansson
,
L.
, and
Löfroth
,
J.-E.
,
1993
, “
Diffusion and Interaction in Gels and Solutions—4: Hard Sphere Brownian Dynamics Simulations
,”
J. Chem. Phys.
,
98
(
9
), pp.
7471
7479
.10.1063/1.464686
19.
Johnson
,
E. M.
,
Berk
,
D. A.
,
Jain
,
R. K.
, and
Deen
,
W. M.
,
1996
, “
Hindered Diffusion in Agarose Gels: Test of Effective Medium Model
,”
Biophys. J.
,
70
(
2
), pp.
1017
1023
.10.1016/S0006-3495(96)79645-5
20.
Solomentsev
,
Y. E.
, and
Anderson
,
J. L.
,
1996
, “
Rotation of a Sphere in Brinkman Fluids
,”
Phys. Fluids
,
8
(
4
), pp.
1119
1121
.10.1063/1.868890
21.
Gu
,
W. Y.
,
Yao
,
H.
,
Vega
,
A. L.
, and
Flagler
,
D.
,
2004
, “
Diffusivity of Ions in Agarose Gels and Intervertebral Disc: Effect of Porosity
,”
Ann. Biomed. Eng.
,
32
(
12
), pp.
1710
1717
.10.1007/s10439-004-7823-4
22.
Bear
,
J.
, and
Bachmat
,
Y.
,
1990
,
Introduction to Modeling of Transport Phenomena in Porous Media
, Kluwer Academic Publishers, Dordrecht, The Nederlands.
23.
Kosto
,
K. B.
, and
Deen
,
W. M.
,
2004
, “
Diffusivities of Macromolecules in Composite Hydrogels
,”
AIChE J.
,
50
(
11
), pp.
2648
2658
.10.1002/aic.10216
24.
Fernandez, M.
,
Jambawalikar
,
S.
, and
Myers
,
K.
,
2014
, “
Toward Quantitative Biomarkers Ofcervical Structural Health: Development of MRI Tools of In-Vivo Mechanicalproperty Measurement
,”
Proc. Intl. Soc. Mag. Reson. Med.
,
22
, p. 2259.
25.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
(
2
), pp.
155
164
.10.1063/1.1712886
26.
Walpole
,
L. J.
,
1984
, “
Fourth-Rank Tensors of the Thirty-Two Crystal Classes: Multiplication Tables
,”
Proc. R. Soc. Ser. A
,
391
(
1800
), pp.
149
179
.10.1098/rspa.1984.0008
27.
Federico
,
S.
, and
Herzog
,
W.
,
2008
, “
On the Permeability of Fibre-Reinforced Porous Materials
,”
Int. J. Solids Struct.
,
45
(
7–8
), pp.
2160
2172
.10.1016/j.ijsolstr.2007.11.014
28.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1960
,
Electrodynamics of Continuous Media
,
Pergamon Press
,
Oxford, UK
.
29.
McLaughlin
,
R.
,
1977
, “
A Study of the Differential Scheme for Composite Materials
,”
Int. J. Eng. Sci.
,
15
(
4
), pp.
237
244
.10.1016/0020-7225(77)90058-1
30.
Norris
,
A. N.
,
1985
, “
A Differential Scheme for the Effective Moduli of Composites
,”
Mech. Mater.
,
4
(
1
), pp.
1
16
.10.1016/0167-6636(85)90002-X
31.
Zimmerman
,
R. W.
,
1991
, “
Elastic Moduli of a Solid Containing Spherical Inclusions
,”
Mech. Mater.
,
12
(
1
), pp.
17
24
.10.1016/0167-6636(91)90049-6
32.
Welty
,
J. R.
,
Wicks
,
C. E.
,
Rorrer
,
G.
, and
Wilson
,
R. E.
,
2009
,
Fundamentals of Momentum, Heat, and Mass Transfer
,
Wiley, Hoboken, NJ
.
33.
Truskey
,
G. A.
,
Yuan
,
F.
, and
Katz
,
D. F.
,
2004
,
Transport Phenomena in Biological Systems
,
Pearson/Prentice Hall
,
Upper Saddle River, NJ
.
34.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.10.1098/rsif.2005.0073
35.
Venn
,
M.
, and
Maroudas
,
A.
,
1977
, “
Chemical Composition and Swelling of Normal and Osteoarthrotic Femoral Head Cartilage. I. Chemical Composition
,”
Ann. Rheum. Dis.
,
36
(
2
), pp.
121
129
.10.1136/ard.36.2.121
36.
Jurvelin
,
J.
,
Buschmann
,
M.
, and
Hunziker
,
E.
,
2003
, “
Mechanical Anisotropy of the Human Knee Articular Cartilage in Compression
,”
Proc. Inst. Mech. Eng., Part H
,
217
(
3
), pp.
215
219
.10.1243/095441103765212712
37.
Chen
,
S.
,
Falcovitz
,
Y.
,
Schneiderman
,
R.
,
Maroudas
,
A.
, and
Sah
,
R.
,
2001
, “
Depth-Dependent Compressive Properties of Normal Aged Human Femoral Head Articular Cartilage: Relationship to Fixed Charge Density
,”
Osteoarthritis Cartilage
,
9
(
6
), pp.
561
569
.10.1053/joca.2001.0424
38.
Irrechukwu
,
O. N.
, and
Levenston
,
M. E.
,
2009
, “
Improved Estimation of Solute Diffusivity Through Numerical Analysis of Frap Experiments
,”
Cellular Mol. Bioeng.
,
2
(
1
), pp.
104
117
.10.1007/s12195-009-0042-1
39.
Armstrong
,
J. K.
,
Wenby
,
R. B.
,
Meiselman
,
H. J.
, and
Fisher
,
T. C.
,
2004
, “
The Hydrodynamic Radii of Macromolecules and Their Effect on Red Blood Cell Aggregation
,”
Biophys. J.
,
87
(
6
), pp.
4259
4270
.10.1529/biophysj.104.047746
40.
Bert
,
J. L.
,
Pearce
,
R. H.
,
Mathieson
,
J. M.
, and
Warner
,
S. J.
,
1980
, “
Characterization of Collagenous Meshworks by Volume Exclusion of Dextrans
,”
Biochem. J.
,
191
(
3
), pp.
761
768
.10.1042/bj1910761
41.
Weiss
,
C.
,
Rosenberg
,
L.
, and
Helfet
,
A. J.
,
1968
, “
An Ultrastructural Study of Normal Young Adult Human Articular Cartilage
,”
JBJS
,
50
(
4
), pp.
663
674
.10.2106/00004623-196850040-00002
42.
Federico
,
S.
, and
Gasser
,
T. C.
,
2010
, “
Nonlinear Elasticity of Biological Tissues With Statistical Fibre Orientation
,”
J. R. Soc. Interface
,
7
(
47
), pp.
955
966
.10.1098/rsif.2009.0502
43.
Weisstein
,
E. W.
,
2005
, “
Erfi. From MathWorld—A Wolfram Web Resource
,” Wolfram Research, Champaign, IL, accessed Jan. 11, 2020, http://mathworld.wolfram.com/Erfi.html
44.
Pajerski
,
J.
,
2010
, “
Nonlinear Biphasic Microstructural Numerical Analysis of Articular Cartilage and Chondrocytes
,” M.Sc. thesis, The University of Calgary, Calgary, AB, Canada.
45.
Federico
,
S.
,
2015
, “
Porous Materials With Statistically Oriented Reinforcing Fibres
,”
Nonlinear Mechanics of Soft Fibrous Materials
,
L.
Dorfmann
and
R. W.
Ogden
, eds., CISM Courses and Lectures No. 559, International Centre for Mechanical Sciences,
Springer
,
Berlin, Germany
, pp.
49
120
.
46.
Quinn
,
T. M.
,
Kocian
,
P.
, and
Meister
,
J.-J.
,
2000
, “
Static Compression is Associated With Decreased Diffusivity of Dextrans in Cartilage Explants
,”
Arch. Biochem. Biophys.
,
384
(
2
), pp.
327
334
.10.1006/abbi.2000.2077
47.
Leddy
,
H. A.
, and
Guilak
,
F.
,
2003
, “
Site-Specific Molecular Diffusion in Articular Cartilage Measured Using Fluorescence Recovery After Photobleaching
,”
Ann. Biomed. Eng.
,
31
(
7
), pp.
753
760
.10.1114/1.1581879
48.
Maroudas
,
A.
,
1968
, “
Physicochemical Properties of Cartilage in the Light of Ion Exchange Theory
,”
Biophys. J.
,
8
(
5
), pp.
575
595
.10.1016/S0006-3495(68)86509-9
49.
Bajpayee
,
A. G.
,
Wong
,
C. R.
,
Bawendi
,
M. G.
,
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
2014
, “
Avidin as a Model for Charge Driven Transport Into Cartilage and Drug Delivery for Treating Early Stage Post-Traumatic Osteoarthritis
,”
Biomaterials
,
35
(
1
), pp.
538
549
.10.1016/j.biomaterials.2013.09.091
50.
Foy
,
B. D.
, and
Blake
,
J.
,
2001
, “
Diffusion of Paramagnetically Labeled Proteins in Cartilage: Enhancement of the 1-d NMR Imaging Technique
,”
J. Magn. Reson.
,
148
(
1
), pp.
126
134
.10.1006/jmre.2000.2216
51.
Maroudas
,
A.
,
1970
, “
Distribution and Diffusion of Solutes in Articular Cartilage
,”
Biophys. J.
,
10
(
5
), pp.
365
379
.10.1016/S0006-3495(70)86307-X
52.
Torzilli
,
P. A.
,
Arduino
,
J. M.
,
Gregory
,
J. D.
, and
Bansal
,
M.
,
1997
, “
Effect of Proteoglycan Removal on Solute Mobility in Articular Cartilage
,”
J. Biomech.
,
30
(
9
), pp.
895
902
.10.1016/S0021-9290(97)00059-6
53.
Rieppo
,
J.
,
Hyttinen
,
M.
,
Halmesmaki
,
E.
,
Ruotsalainen
,
H.
,
Vasara
,
A.
,
Kiviranta
,
I.
,
Jurvelin
,
J.
, and
Helminen
,
H. J.
,
2009
, “
Changes in Spatial Collagen Content and Collagen Network Architecture in Porcine Articular Cartilage During Growth and Maturation
,”
Osteoarthritis Cartilage
,
17
(
4
), pp.
448
455
.10.1016/j.joca.2008.09.004
54.
Walton
,
R. L.
,
1990
, “
Experimental Surgery and Physiology: Induced Animal Models of Human Disease
,”
Plast. Reconstruct. Surg.
,
85
(
5
), p.
820
10.1097/00006534-199005000-00035
55.
Irrechukwu
,
O. N.
,
2007
, “
The Role of Matrix Composition and Age in Solute Diffusion Within Articular Cartilage
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
56.
Mow
,
V. C.
,
Holmes
,
M. H.
, and
Lai
,
W. M.
,
1984
, “
Fluid Transport and Mechanical Properties of Articular Cartilage: A Review
,”
J. Biomech.
,
17
(
5
), pp.
377
394
.10.1016/0021-9290(84)90031-9
57.
DiDomenico
,
C. D.
,
Lintz
,
M.
, and
Bonassar
,
L. J.
,
2018
, “
Molecular Transport in Articular Cartilage: What Have we Learned From the Past 50 Years?
,”
Nat. Rev. Rheumatol.
,
14
(
7
), pp.
393
403
.10.1038/s41584-018-0033-5
58.
Pluen
,
A.
,
Netti
,
P. A.
,
Jain
,
R. K.
, and
Berk
,
D. A.
,
1999
, “
Diffusion of Macromolecules in Agarose Gels: Comparison of Linear and Globular Configurations
,”
Biophys. J.
,
77
(
1
), pp.
542
552
.10.1016/S0006-3495(99)76911-0
You do not currently have access to this content.