Abstract

Vascular tortuosity may impede blood flow, occlude the lumen, and ultimately lead to ischemia or even infarction. Mechanical loads like blood pressure, axial force, and also torsion are key factors participating in this complex mechanobiological process. The available studies on arterial torsion instability followed computational or experimental approaches, yet single available theoretical study had modeled the artery as isotropic linear elastic. This paper aim is to validate a theoretical model of arterial torsion instability against experimental data. The artery is modeled as a single-layered, nonlinear, hyperelastic, anisotropic solid, with parameters calibrated from experiment. Linear bifurcation analysis is then performed to predict experimentally measured stability margins. Uncertainties in geometrical parameters and in measured mechanical response were considered. Also, the type of rate (incremental) boundary conditions (RBCs) impact on the results was examined (e.g., dead load, fluid pressure). The predicted critical torque and twist angle followed the experimentally measured trends. The closest prediction errors in the critical torque and twist rate were 22% and 67%, respectively. Using the different RBCs incurred differences of up to 50% difference within the model predictions. The present results suggest that the model may require further improvements. However, it offers an approach that can be used to predict allowable twist levels in surgical procedures (like anastomosis and grafting) and in the design of stents for arteries subjected to high torsion levels (like the femoropopliteal arteries). It may also be instructive in understanding biomechanical processes like arterial tortuosity, kinking, and coiling.

References

1.
Han
,
H.-C.
,
Chesnutt
,
J. K. W.
,
Garcia
,
J. R.
,
Liu
,
Q.
, and
Wen
,
Q.
,
2013
, “
Artery Buckling: New Phenotypes, Models, and Applications
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1399
1410
.10.1007/s10439-012-0707-0
2.
Cyron
,
C. J.
,
Wilson
,
J. S.
, and
Humphrey
,
J. D.
,
2014
, “
Mechanobiological Stability: A New Paradigm to Understand the Enlargement of Aneurysms?
,”
J. R. Soc. Interface
,
11
(
100
), p.
0680
.10.1098/rsif.2014.0680
3.
Leipzig
,
T. J.
, and
Dohrmann
,
G. J.
,
1986
, “
The Tortuous or Kinked Carotid Artery: Pathogenesis and Clinical Considerations. A Historical Review
,”
Surg. Neurol.
,
25
(
5
), pp.
478
486
.10.1016/0090-3019(86)90087-X
4.
Del Corso
,
L.
,
Moruzzo
,
D.
,
Conte
,
B.
,
Agelli
,
M.
,
Romanelli
,
A. M.
,
Pastine
,
F.
,
Protti
,
M.
,
Pentimone
,
F.
, and
Baggiani
,
G.
,
1998
, “
Tortuosity, Kinking, and Coiling of the Carotid Artery: Expression of Atherosclerosis or Aging?
,”
Angiology
,
49
(
5
), pp.
361
371
.10.1177/000331979804900505
5.
Desai
,
B.
, and
Toole
,
J. F.
,
1975
, “
Kinks, Coils, and Carotids: A Review
,”
Stroke
,
6
(
6
), pp.
649
653
.10.1161/01.STR.6.6.649
6.
Vannix
,
R. S.
,
Joergenson
,
E. J.
, and
Carter
,
R.
,
1977
, “
Kinking of the Internal Carotid Artery: Clinical Significance and Surgical Management
,”
Am. J. Surg.
,
134
(
1
), pp.
82
89
.10.1016/0002-9610(77)90288-4
7.
Metz
,
H.
,
Bannister
,
R. G.
,
Murray-Leslie
,
R. M.
,
Bull
,
J. W. D.
, and
Marshall
,
J.
,
1961
, “
Kinking of the Internal Carotid Artery
,”
Lancet
,
277
(
7174
), pp.
424
426
.10.1016/S0140-6736(61)90004-6
8.
Deterling
,
R. A.
,
1952
, “
Tortuous Right Common Carotid Artery Simulating Aneurysm
,”
Angiology
,
3
(
6
), pp.
483
492
.10.1177/000331975200300607
9.
Wells
,
F.
,
2013
,
The Heart of Leonardo: Foreword by HRH Prince Charles, the Prince of Wales
,
Springer-Verlag
,
London, UK
.
10.
Young
,
T.
,
1809
, “
I. The Croonian Lecture. On the Functions of the Heart and Arteries
,”
Philos. Trans. R. Soc. London
,
99
, pp.
1
31
.https://royalsocietypublishing.org/doi/pdf/10.1098/rstl.1809.0001
11.
Kelly
,
A. B.
,
1898
, “
Large Pulsating Vessels in the Pharynx
,”
Glasgow Med. J.
,
49
(
1
), pp.
28
34
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5949803/pdf/glasgowmedj75349-0031.pdf
12.
Brown Kelly
,
A.
,
1924
, “
Tortuosity of the Internal Carotid in Relation to the Pharynx
,”
Proc. R. Soc. Med.
,
17
(
Joint_Discuss
), pp.
1
64
.10.1177/003591572401700607
13.
Parkinson
,
J.
,
Bedford
,
D. E.
, and
Almond
,
S.
,
1939
, “
The Kinked Carotid Artery That Simulates Aneurysm
,”
Brit. Heart J.
,
1
(
4
), pp.
345
361
.10.1136/hrt.1.4.345
14.
Weibel
,
J. M. D.
, and
Fields
,
W. S. M. D.
,
1965
, “
Tortuosity, Coiling, and Kinking of the Internal Carotid Artery—II: Relationship of Morphological Variation to Cerebrovascular Insufficiency
,”
Neurology
,
15
(
5
), pp.
462
468
.10.1212/WNL.15.5.462
15.
Collins
,
P. S.
,
Orecchia
,
P.
, and
Gomez
,
E.
,
1991
, “
A Technique for Correction of Carotid Kinks and Coils Following Endarterectomy
,”
Ann. Vasc. Surg.
,
5
(
2
), pp.
116
120
.10.1007/BF02016742
16.
Meier
,
R.
,
Fournier
,
I.
,
Toso
,
C.
,
Berney
,
T.
, and
Bednarkiewicz
,
M.
,
2017
, “
Surgical Repair of a Living-Donor Kidney Graft Artery Kink by a Postanastomotic External Iliac Artery Rotation and Reanastomosis
,”
Ann. Vasc. Surg.
,
44
, p.
414
.10.1016/j.avsg.2017.03.183
17.
Dawson
,
D. L.
,
Hellinger
,
J. C.
,
Terramani
,
T. T.
,
Najibi
,
S.
,
Martin
,
L. G.
, and
Lumsden
,
A. B.
,
2002
, “
Iliac Artery Kinking With Endovascular Therapies: Technical Considerations
,”
J. Vasc. Interventional Radiol.
,
13
(
7
), pp.
729
733
.10.1016/S1051-0443(07)61852-1
18.
Wolf
,
Y. G.
,
Tillich
,
M.
,
Lee
,
W. A.
,
Rubin
,
G. D.
,
Fogarty
,
T. J.
, and
Zarins
,
C. K.
,
2001
, “
Impact of Aortoiliac Tortuosity on Endovascular Repair of Abdominal Aortic Aneurysms: Evaluation of 3D Computer-Based Assessment
,”
J. Vasc. Surg.
,
34
(
4
), pp.
594
599
.10.1067/mva.2001.118586
19.
Maleckis
,
K.
,
Deegan
,
P.
,
Poulson
,
W.
,
Sievers
,
C.
,
Desyatova
,
A.
,
MacTaggart
,
J.
, and
Kamenskiy
,
A.
,
2017
, “
Comparison of Femoropopliteal Artery Stents Under Axial and Radial Compression, Axial Tension, Bending, and Torsion Deformations
,”
J. Mech. Behav. Biomed. Mater.
,
75
, pp.
160
168
.10.1016/j.jmbbm.2017.07.017
20.
Cheng
,
C. P.
,
Wilson
,
N. M.
,
Hallett
,
R. L.
,
Herfkens
,
R. J.
, and
Taylor
,
C. A.
,
2006
, “
In Vivo MR Angiographic Quantification of Axial and Twisting Deformations of the Superficial Femoral Artery Resulting From Maximum Hip and Knee Flexion
,”
J. Vasc. Interventional Radiol.
,
17
(
6
), pp.
979
987
.10.1097/01.RVI.0000220367.62137.E8
21.
Klein
,
A. J.
,
James Chen
,
S.
,
Messenger
,
J. C.
,
Hansgen
,
A. R.
,
Plomondon
,
M. E.
,
Carroll
,
J. D.
, and
Casserly
,
I. P.
,
2009
, “
Quantitative Assessment of the Conformational Change in the Femoropopliteal Artery With Leg Movement
,”
Catheterization Cardiovasc. Interventions
,
74
(
5
), pp.
787
798
.10.1002/ccd.22124
22.
MacTaggart
,
J. N.
,
Phillips
,
N. Y.
,
Lomneth
,
C. S.
,
Pipinos
,
I. I.
,
Bowen
,
R.
,
Timothy Baxter
,
B.
,
Johanning
,
J.
,
Longo
,
G. M.
,
Desyatova
,
A. S.
,
Moulton
,
M. J.
,
Dzenis
,
Y. A.
, and
Kamenskiy
,
A. V.
,
2014
, “
Three-Dimensional Bending, Torsion and Axial Compression of the Femoropopliteal Artery During Limb Flexion
,”
J. Biomech.
,
47
(
10
), pp.
2249
2256
.10.1016/j.jbiomech.2014.04.053
23.
Anastasia
,
D.
,
William
,
P.
,
Paul
,
D.
,
Carol
,
L.
,
Andreas
,
S.
,
Kaspars
,
M.
,
Jason
,
M.
, and
Alexey
,
K.
,
2017
, “
Limb Flexion-Induced Twist and Associated Intramural Stresses in the Human Femoropopliteal Artery
,”
J. R. Soc. Interface
,
14
(
128
), p.
20170025
.10.1098/rsif.2017.0025
24.
Wood
,
N. B.
,
Zhao
,
S. Z.
,
Zambanini
,
A.
,
Jackson
,
M.
,
Gedroyc
,
W.
,
Thom
,
S. A.
,
Hughes
,
A. D.
, and
Xu
,
X. Y.
,
2006
, “
Curvature and Tortuosity of the Superficial Femoral Artery: A Possible Risk Factor for Peripheral Arterial Disease
,”
J. Appl. Physiol.
,
101
(
5
), pp.
1412
1418
.10.1152/japplphysiol.00051.2006
25.
Li
,
X.
,
Liu
,
X.
,
Li
,
X.
,
Xu
,
L.
,
Chen
,
X.
, and
Liang
,
F.
,
2019
, “
Tortuosity of the Superficial Femoral Artery and Its Influence on Blood Flow Patterns and Risk of Atherosclerosis
,”
Biomech. Model. Mechanobiol.
,
18
(
4
), pp.
883
896
.10.1007/s10237-019-01118-4
26.
Burks
,
D. D.
,
Markey
,
B. J.
,
Burkhard
,
T. K.
,
Balsara
,
Z. N.
,
Haluszka
,
M. M.
, and
Canning
,
D. A.
,
1990
, “
Suspected Testicular Torsion and Ischemia: Evaluation With Color Doppler Sonography
,”
Radiology
,
175
(
3
), pp.
815
821
.10.1148/radiology.175.3.2188301
27.
Baud
,
C.
,
Veyrac
,
C.
,
Couture
,
A.
, and
Ferran
,
J. L.
,
1998
, “
Spiral Twist of the Spermatic Cord: A Reliable Sign of Testicular Torsion
,”
Pediat. Radiol.
,
28
(
12
), pp.
950
954
.10.1007/s002470050507
28.
Lin
,
E. P.
,
Bhatt
,
S.
,
Rubens
,
D. J.
, and
Dogra
,
V. S.
,
2007
, “
Testicular Torsion: Twists and Turns
,”
Semin. Ultrasound, CT MRI
,
28
(
4
), pp.
317
328
.10.1053/j.sult.2007.05.008
29.
Karaguzel
,
E.
,
Kadihasanoglu
,
M.
, and
Kutlu
,
O.
,
2014
, “
Mechanisms of Testicular Torsion and Potential Protective Agents
,”
Nat. Rev. Urol.
,
11
(
7
), pp.
391
399
.10.1038/nrurol.2014.135
30.
Izquierdo
,
R.
,
Dobrin
,
P. B.
,
Fu
,
K.
,
Park
,
F.
, and
Galante
,
G.
,
1998
, “
The Effect of Twist on Microvascular Anastomotic Patency and Angiographic Luminal Dimensions
,”
J. Surg. Res.
,
78
(
1
), pp.
60
63
.10.1006/jsre.1997.5228
31.
Topalan
,
M.
,
Bilgin
,
S. S.
,
Ip
,
W. Y.
, and
Chow
,
S. P.
,
2003
, “
Effect of Torsion on Microarterial Anastomosis Patency
,”
Microsurgery
,
23
(
1
), pp.
56
59
.10.1002/micr.10092
32.
Salgarello
,
M.
,
Lahoud
,
P.
,
Selvaggi
,
G.
,
Gentileschi
,
S.
,
Sturla
,
M.
, and
Farallo
,
E.
,
2001
, “
The Effect of Twisting on Microanastomotic Patency of Arteries and Veins in a Rat Model
,”
Ann. Plast. Surg.
,
47
(
6
), pp.
643
646
.10.1097/00000637-200112000-00011
33.
Bilgin
,
S. S.
,
Topalan
,
M.
,
Ip
,
W. Y.
, and
Chow
,
S. P.
,
2003
, “
Effect of Torsion on Microvenous Anastomotic Patency in a Rat Model and Early Thrombolytic Phenomenon
,”
Microsurgery
,
23
(
4
), pp.
381
386
.10.1002/micr.10150
34.
Endean
,
E. D.
,
DeJong
,
S.
, and
Dobrin
,
P. B.
,
1989
, “
Effect of Twist on Flow and Patency of Vein Grafts
,”
J. Vasc. Surg.
,
9
(
5
), pp.
651
655
.10.1016/S0741-5214(89)70035-5
35.
Garcia
,
J. R.
,
Lamm
,
S. D.
, and
Han
,
H.-C.
,
2013
, “
Twist Buckling Behavior of Arteries
,”
Biomech. Model. Mechanobiol.
,
12
(
5
), pp.
915
927
.10.1007/s10237-012-0453-0
36.
Garcia
,
J. R.
,
Sanyal
,
A.
,
Fatemifar
,
F.
,
Mottahedi
,
M.
, and
Han
,
H.-C.
,
2017
, “
Twist Buckling of Veins Under Torsional Loading
,”
J. Biomech.
,
58
, pp.
123
130
.10.1016/j.jbiomech.2017.04.018
37.
Goktas
,
S.
,
Yalcin
,
O.
,
Ermek
,
E.
,
Piskin
,
S.
,
Capraz
,
C. T.
,
Cakmak
,
Y. O.
, and
Pekkan
,
K.
,
2017
, “
Haemodynamic Recovery Properties of the Torsioned Testicular Artery Lumen
,”
Sci. Rep.
,
7
(
1
), p.
15570
.10.1038/s41598-017-15680-3
38.
Greenhill
,
P. A. G.
,
1883
, “
On the Strength of Shafting When Exposed Both to Torsion and to End Thrust
,”
Proc. Inst. Mech. Eng.
,
34
(
1
), pp.
182
225
.10.1243/PIME_PROC_1883_034_013_02
39.
Schwerin
,
E.
,
1924
, “
Torsional Stability of Thin-Walled Tubes
,”
Proceedings of First International Congress for Applied Mechanics
, Delft, pp.
255
265
.
40.
Donnell
,
L. H.
,
1933
, Stability of Thin-Walled Tubes Under Torsion, U.S. Government Printing Office, NACA Report, Report No.
TR-479
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930091553.pdf
41.
Flügge
,
W.
,
1960
,
Stresses in Shells
,
Springer-Verlag
,
Berlin, Germany
.
42.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
1961
,
Theory of Elastic Stability
,
McGrawHill-Kogakusha
,
Tokyo, Japan
, p.
109
.
43.
Selvaggi
,
G.
,
Anicic
,
S.
, and
Formaggia
,
L.
,
2006
, “
Mathematical Explanation of the Buckling of the Vessels After Twisting of the Microanastomosis
,”
Microsurgery
,
26
(
7
), pp.
524
528
.10.1002/micr.20281
44.
Green
,
A. E.
, and
Spencer
,
A. J. M.
,
1958
, “
The Stability of a Circular Cylinder Under Finite Extension and Torsion
,”
J. Math. Phys.
,
37
(
1–4
), pp.
316
338
.10.1002/sapm1958371316
45.
Ertepinar
,
A.
, and
Wang
,
A. S. D.
,
1975
, “
Torsional Buckling of an Elastic Thick-Walled Tube Made of Rubber-Like Material
,”
Int. J. Solids Struct.
,
11
(
3
), pp.
329
337
.10.1016/0020-7683(75)90072-4
46.
Duka
,
E. D.
,
England
,
A. H.
, and
Spencer
,
A. J. M.
,
1993
, “
Bifurcation of a Solid Circular Elastic Cylinder Under Finite Extension and Torsion
,”
Acta Mech.
,
98
(
1–4
), pp.
107
121
.10.1007/BF01174297
47.
Ciarletta
,
P.
, and
Destrade
,
M.
,
2014
, “
Torsion Instability of Soft Solid Cylinders
,”
IMA J. Appl. Math.
,
79
(
5
), pp.
804
819
.10.1093/imamat/hxt052
48.
Balbi
,
V.
, and
Ciarletta
,
P.
,
2015
, “
Helical Buckling of Thick-Walled, Pre-Stressed, Cylindrical Tubes Under a Finite Torsion
,”
Math. Mech. Solids
,
20
(
6
), pp.
625
642
.10.1177/1081286514550570
49.
Ye
,
S.
,
Yin
,
S.-F.
,
Li
,
B.
, and
Feng
,
X.-Q.
,
2019
, “
Torsion Instability of Anisotropic Cylindrical Tissues With Growth
,”
Acta Mech. Solida Sin.
,
32
(
5
), pp.
621
632
.10.1007/s10338-019-00087-6
50.
Goriely
,
A.
, and
Vandiver
,
R.
,
2010
, “
On the Mechanical Stability of Growing Arteries
,”
IMA J. Appl. Math.
,
75
(
4
), pp.
549
570
.10.1093/imamat/hxq021
51.
Vandiver
,
R. M.
,
2015
, “
Buckling Instability in Arteries
,”
J. Theor. Biol.
,
371
, pp.
1
8
.10.1016/j.jtbi.2015.01.039
52.
Balbi
,
V.
,
Kuhl
,
E.
, and
Ciarletta
,
P.
,
2015
, “
Morphoelastic Control of Gastro-Intestinal Organogenesis: Theoretical Predictions and Numerical Insights
,”
J. Mech. Phys. Solids
,
78
, pp.
493
510
.10.1016/j.jmps.2015.02.016
53.
Rodríguez
,
J.
, and
Merodio
,
J.
,
2016
, “
Helical Buckling and Postbuckling of Pre-Stressed Cylindrical Tubes Under Finite Torsion
,”
Finite Elem. Anal. Des.
,
112
, pp.
1
10
.10.1016/j.finel.2015.12.003
54.
Han
,
H.-C.
,
2007
, “
A Biomechanical Model of Artery Buckling
,”
J. Biomech.
,
40
(
16
), pp.
3672
3678
.10.1016/j.jbiomech.2007.06.018
55.
Han
,
H.-C.
,
2009
, “
Blood Vessel Buckling Within Soft Surrounding Tissue Generates Tortuosity
,”
J. Biomech.
,
42
(
16
), pp.
2797
2801
.10.1016/j.jbiomech.2009.07.033
56.
Lee
,
A. Y.
,
Han
,
B.
,
Lamm
,
S. D.
,
Fierro
,
C. A.
, and
Han
,
H.-C.
,
2012
, “
Effects of Elastin Degradation and Surrounding Matrix Support on Artery Stability
,”
Am. J. Physiol. Heart Circ. Physiol.
,
302
(
4
), pp.
H873
H884
.10.1152/ajpheart.00463.2011
57.
Mottahedi
,
M.
, and
Han
,
H.-C.
,
2016
, “
Artery Buckling Analysis Using a Two-Layered Wall Model With Collagen Dispersion
,”
J. Mech. Behav. Biomed. Mater.
,
60
, pp.
515
524
.10.1016/j.jmbbm.2016.03.007
58.
Gent
,
A. N.
, and
Hua
,
K. C.
,
2004
, “
Torsional Instability of Stretched Rubber Cylinders
,”
Int. J. Non-Linear Mech.
,
39
(
3
), pp.
483
489
.10.1016/S0020-7462(02)00217-2
59.
Murphy
,
J. G.
,
2015
, “
The Stability of Thin, Stretched and Twisted Elastic Rods
,”
Int. J. Non-Linear Mech.
,
68
, pp.
96
100
.10.1016/j.ijnonlinmec.2014.05.018
60.
Horgan
,
C. O.
, and
Murphy
,
J. G.
,
2016
, “
Kinking Instability in the Torsion of Stretched Anisotropic Elastomeric Filaments
,”
J. Elasticity
,
122
(
2
), pp.
197
209
. Feb.10.1007/s10659-015-9540-7
61.
Emuna
,
N.
, and
Durban
,
D.
,
2018
, “
On Rate Boundary Conditions for Soft Tissue Bifurcation Analysis
,”
ASME J. Biomech. Eng.
,
140
(
12
), p.
121010
.10.1115/1.4041165
62.
Papanastasiou
,
P.
, and
Durban
,
D.
,
1999
, “
Bifurcation of Elastoplastic Pressure-Sensitive Hollow Cylinders
,”
ASME J. Appl. Mech.
,
66
(
1
), pp.
117
123
.10.1115/1.2789138
63.
Hollander
,
Y.
, and
Durban
,
D.
,
2009
, “
Bifurcation Phenomena of a Biphasic Compressible Hyperelastic Spherical Continuum
,”
Int. J. Solids Struct.
,
46
(
24
), pp.
4252
4259
.10.1016/j.ijsolstr.2009.08.015
64.
Zubov
,
L. M.
, and
Sheidakov
,
D. N.
,
2008
, “
Instability of a Hollow Elastic Cylinder Under Tension, Torsion, and Inflation
,”
ASME J. Appl. Mech.
,
75
(
1
), p.
011002
.10.1115/1.2723824
65.
Prim
,
D. A.
,
Mohamed
,
M. A.
,
Lane
,
B. A.
,
Poblete
,
K.
,
Wierzbicki
,
M. A.
,
Lessner
,
S. M.
,
Shazly
,
T.
, and
Eberth
,
J. F.
,
2018
, “
Comparative Mechanics of Diverse Mammalian Carotid Arteries
,”
PLoS One
,
13
(
8
), p.
e0202123
.10.1371/journal.pone.0202123
66.
Zhou
,
B.
,
Prim
,
D. A.
,
Romito
,
E. J.
,
McNamara
,
L. P.
,
Spinale
,
F. G.
,
Shazly
,
T.
, and
Eberth
,
J. F.
,
2018
, “
Contractile Smooth Muscle and Active Stress Generation in Porcine Common Carotids
,”
ASME J. Biomech. Eng.
,
140
(
1
), p.
014501
.10.1115/1.4037949
67.
Kural
,
M. H.
,
Cai
,
M.
,
Tang
,
D.
,
Gwyther
,
T.
,
Zheng
,
J.
, and
Billiar
,
K. L.
,
2012
, “
Planar Biaxial Characterization of Diseased Human Coronary and Carotid Arteries for Computational Modeling
,”
J. Biomech.
,
45
(
5
), pp.
790
798
.10.1016/j.jbiomech.2011.11.019
68.
Roy
,
S.
,
Silacci
,
P.
, and
Stergiopulos
,
N.
,
2005
, “
Biomechanical Proprieties of Decellularized Porcine Common Carotid Arteries
,”
Am. J. Physiol. Heart Circ. Physiol.
,
289
(
4
), pp.
H1567
H1576
.10.1152/ajpheart.00564.2004
69.
Hollander
,
Y.
,
Durban
,
D.
,
Lu
,
X.
,
Kassab
,
G. S.
, and
Lanir
,
Y.
,
2011
, “
Constitutive Modeling of Coronary Arterial Media-Comparison of Three Model Classes
,”
ASME J. Biomech. Eng.
,
133
(
6
), p.
061008
.10.1115/1.4004249
70.
Emuna
,
N.
,
Durban
,
D.
, and
Osovski
,
S.
,
2018
, “
Sensitivity of Arterial Hyperelastic Models to Uncertainties in Stress-Free Measurements
,”
ASME J. Biomech. Eng.
,
140
(
10
), p.
101013
.10.1115/1.4040400
71.
Genovese
,
K.
,
2019
, “
An Omnidirectional DIC System for Dynamic Strain Measurements on Soft Biological Parts to an Omnidirectional DIC System for Dynamic Strain Measurement on Soft Biological Tissues and Organs
,”
Opt. Lasers Eng.
,
116
, pp.
6
18
.10.1016/j.optlaseng.2018.12.006
72.
Han
,
H.-C.
,
2012
, “
Twisted Blood Vessels: Symptoms, Etiology and Biomechanical Mechanisms
,”
J. Vasc. Res.
,
49
(
3
), pp.
185
197
.10.1159/000335123
73.
Ciuricǎ
,
S.
,
Lopez-Sublet
,
M.
,
Loeys
,
B. L.
,
Radhouani
,
I.
,
Natarajan
,
N.
,
Vikkula
,
M.
,
Maas
,
A. H. E. M.
,
Adlam
,
D.
, and
Persu
,
A.
,
2019
, “
Arterial Tortuosity
,”
Hypertension
,
73
(
5
), pp.
951
960
.10.1161/HYPERTENSIONAHA.118.11647
74.
Henry
,
P. J.
,
1909
, “
On Pressure Perpendicular to the Shear Planes in Finite Pure Shears, and on the Lengthening of Loaded Wires When Twisted
,”
Proc. R. Soc. London. Ser. A
,
82
, pp.
546
559
.10.1098/rspa.1909.0059
75.
Mihai
,
L. A.
, and
Goriely
,
A.
,
2011
, “
Positive or Negative Poynting Effect? the Role of Adscititious Inequalities in Hyperelastic Materials
,”
Proc. R. Soc. A
,
467
(
2136
), pp.
3633
3646
.10.1098/rspa.2011.0281
76.
Horgan
,
C. O.
, and
Murphy
,
J. G.
,
2015
, “
Reverse Poynting Effects in the Torsion of Soft Biomaterials
,”
J. Elasticity
,
118
(
2
), pp.
127
140
.10.1007/s10659-014-9482-5
77.
Selvaggi
,
G.
,
Salgarello
,
M.
,
Farallo
,
E.
,
Anicic
,
S.
, and
Formaggia
,
L.
,
2004
, “
Effect of Torsion on Microvenous Anastomotic Patency in Rat Model and Early Thrombolytic Phenomenon
,”
Microsurgery
,
24
(
5
), pp.
416
417
.10.1002/micr.20085
78.
Emuna
,
N.
, and
Durban
,
D.
,
2019
, “
Instability of Incompatible Bilayered Soft Tissues and the Role of Interface Conditions
,”
ASME J. Biomech. Eng.
,
141
(
10
), p.
101012
.10.1115/1.4043560
79.
Yosibash
,
Z.
,
Manor
,
I.
,
Gilad
,
I.
, and
Willentz
,
U.
,
2014
, “
Experimental Evidence of the Compressibility of Arteries
,”
J. Mech. Behav. Biomed. Mater.
,
39
, pp.
339
354
.10.1016/j.jmbbm.2014.07.030
80.
Nolan
,
D. R.
, and
McGarry
,
J. P.
,
2016
, “
On the Compressibility of Arterial Tissue
,”
Ann. Biomed. Eng.
,
44
(
4
), pp.
993
1007
.10.1007/s10439-015-1417-1
81.
Yossef
,
O. E.
,
Farajian
,
M.
,
Gilad
,
I.
,
Willenz
,
U.
,
Gutman
,
N.
, and
Yosibash
,
Z.
,
2017
, “
Further Experimental Evidence of the Compressibility of Arteries
,”
J. Mech. Behav. Biomed. Mater.
,
65
, pp.
177
189
.10.1016/j.jmbbm.2016.08.013
82.
Wang
,
R.
,
Gleason
,
J.
, and
Rudolph
,
L.
,
2014
, “
Residual Shear Deformations in the Coronary Artery
,”
ASME J. Biomech. Eng.
,
136
(
6
), p.
061004
.10.1115/1.4027331
83.
Wang
,
R.
, and
Gleason
,
R. L.
,
2010
, “
A Mechanical Analysis of Conduit Arteries Accounting for Longitudinal Residual Strains
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1377
1387
.10.1007/s10439-010-9916-6
84.
Kamenskiy
,
A. V.
,
Pipinos
,
I. I.
,
Dzenis
,
Y. A.
,
Phillips
,
N. Y.
,
Desyatova
,
A. S.
,
Kitson
,
J.
,
Bowen
,
R.
, and
MacTaggart
,
J. N.
,
2015
, “
Effects of Age on the Physiological and Mechanical Characteristics of Human Femoropopliteal Arteries
,”
Acta Biomater.
,
11
, pp.
304
313
.10.1016/j.actbio.2014.09.050
85.
Desyatova
,
A.
,
MacTaggart
,
J.
, and
Kamenskiy
,
A.
,
2017
, “
Constitutive Modeling of Human Femoropopliteal Artery Biaxial Stiffening Due to Aging and Diabetes
,”
Acta Biomater.
,
64
, pp.
50
58
.10.1016/j.actbio.2017.09.042
86.
Gerasimidis
,
S.
,
Virot
,
E.
,
Hutchinson
,
J. W.
, and
Rubinstein
,
S.
,
2018
, “
On Establishing Buckling Knockdowns for Imperfection-Sensitive Shell Structures
,”
ASME J. Appl. Mech.
,
85
(
9
), p.
091010
.10.1115/1.4040455
87.
Datir
,
P.
,
Lee
,
A. Y.
,
Lamm
,
S. D.
, and
Han
,
H.-C.
,
2011
, “
Effects of Geometric Variations on the Buckling of Arteries
,”
Int. J. Appl. Mech.
,
03
(
2
), pp.
385
406
.10.1142/S1758825111001044
88.
Gilchrist
,
M. D.
,
Murphy
,
J. G.
,
Pierrat
,
B.
, and
Saccomandi
,
G.
,
2017
, “
Slight Asymmetry in the Winding Angles of Reinforcing Collagen Can Cause Large Shear Stresses in Arteries and Even Induce Buckling
,”
Meccanica
,
52
(
14
), pp.
1
13
.10.1007/s11012-017-0646-9
89.
Cyron
,
C. J.
, and
Humphrey
,
J. D.
,
2014
, “
Vascular Homeostasis and the Concept of Mechanobiological Stability
,”
Int. J. Eng. Sci.
,
85
, pp.
203
223
.10.1016/j.ijengsci.2014.08.003
90.
Latorre
,
M.
, and
Humphrey
,
J. D.
,
2019
, “
Mechanobiological Stability of Biological Soft Tissues
,”
J. Mech. Phys. Solids
,
125
, pp.
298
325
.10.1016/j.jmps.2018.12.013
91.
Liu
,
Q.
,
Wen
,
Q.
,
Mottahedi
,
M.
, and
Han
,
H.-C.
,
2014
, “
Artery Buckling Analysis Using a Four-Fiber Wall Model
,”
J. Biomech.
,
47
(
11
), pp.
2790
2796
.10.1016/j.jbiomech.2014.06.005
92.
Hollander
,
Y.
,
Durban
,
D.
,
Lu
,
X.
,
Kassab
,
G. S.
, and
Lanir
,
Y.
,
2011
, “
Experimentally Validated Microstructural 3D Constitutive Model of Coronary Arterial Media
,”
ASME J. Biomech. Eng.
,
133
(
3
), p.
031007
.10.1115/1.4003324
You do not currently have access to this content.