Abstract

The main function of articular cartilage is to distribute loads and provide low friction for the opposing surfaces in synovial joints. Biphasic lubrication provided by high fluid load support due to relative motion of the contact surfaces has been widely accepted as the main lubrication mode in diarthrodial joints. However, assessment of chondrocyte response to mechanical loads typically employed nonphysiological uniaxial loads with static contact area. This study aimed to introduce a more physiologically relevant loading protocol for in vitro mechanobiological testing of cartilage explants. Finite element analysis was conducted to examine the biomechanical response of cartilage to two different loading regimes, biaxial loading, that permits migrating contact area, and unconfined uniaxial cyclic compression, traditionally used in mechanobiological experiments. Results predicted in this study showed that continuous tissue rehydration provided by relative surface motion maintained constant fluid pressure and tissue strains through the simulation. On the contrary, due to rapid tissue consolidation predicted in cyclic compression simulation, fluid pressure and transverse strain were reduced by 19% and 26%, respectively. Furthermore, relative surface motion simulation resulted in depth-dependent distribution of fluid pressure and tissue strains while unconfined uniaxial cyclic compression produced nearly uniform fluid pressure through the depth but higher at the center of the sample. Based on the results obtained from this study and since sliding contact occurs in vivo, this physiological loading mode should be considered in assessing biomechanical and mechanobiological cartilage behavior.

References

References
1.
Bergmann
,
G.
,
Bergmann
,
G.
,
Deuretzabacher
,
G.
,
Deuretzabacher
,
G.
,
Heller
,
M.
,
Heller
,
M.
,
Graichen
,
F.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Rohlmann
,
A.
,
Strauss
,
J.
,
Strauss
,
J.
,
Duda
,
G. N.
, and
Duda
,
G. N.
,
2001
, “
Hip Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
(
7
), pp.
859
871
.10.1016/S0021-9290(01)00040-9
2.
Taylor
,
W. R.
,
Heller
,
M. O.
,
Bergmann
,
G.
, and
Duda
,
G. N.
,
2004
, “
Tibio-Femoral Loading During Human Gait and Stair-Climbing
,”
J. Orthop. Res.
,
22
(
3
), pp.
625
632
.10.1016/j.orthres.2003.09.003
3.
Winby
,
C. R.
,
Lloyd
,
D. G.
,
Besier
,
T. F.
, and
Kirk
,
T. B.
,
2009
, “
Muscle and External Load Contribution to Knee Joint Contact Loads During Normal Gait
,”
J. Biomech.
,
42
(
14
), pp.
2294
2300
.10.1016/j.jbiomech.2009.06.019
4.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), p.
73
.10.1115/1.3138202
5.
Li
,
L. P.
, and
Herzog
,
W.
,
2004
, “
Strain-Rate Dependence of Cartilage Stiffness in Unconfined Compression: The Role of Fibril Reinforcement Versus Tissue Volume Change in Fluid Pressurization
,”
J. Biomech.
,
37
(
3
), pp.
375
382
.10.1016/S0021-9290(03)00263-X
6.
Arokoski
,
J. P.
,
Jurvelin
,
J. S.
,
Väätäinen
,
U.
, and
Helminen
,
H. J.
,
2000
, “
Normal and Pathological Adaptations of Articular Cartilage to Joint Loading
,”
Scand. J. Med. Sci. Sports
,
10
(
4
), pp.
186
198
.10.1034/j.1600-0838.2000.010004186.x
7.
Krishnan
,
R.
,
Kopacz
,
M.
, and
Ateshian
,
G. A.
,
2004
, “
Experimental Verification of the Role of Interstitial Fluid Pressurization in Cartilage Lubrication
,”
J. Orthop. Res.
,
22
(
3
), pp.
565
570
.10.1016/j.orthres.2003.07.002
8.
Unsworth
,
A.
,
Dowson
,
D.
, and
Wright
,
V.
,
1975
, “
Some New Evidence on Human Joint Lubrication
,”
Ann. Rheum. Dis.
,
34
(
4
), pp.
277
285
.10.1136/ard.34.4.277
9.
Armstrong
,
C. G.
, and
Mow
,
V. C.
,
1982
, “
Variations in the Intrinsic Mechanical Properties of Human Articular Cartilage With Age, Degeneration, and Water Content
,”
J. Bone Jt. Surg. Am.
,
64
(
1
), pp.
88
94
.10.2106/00004623-198264010-00013
10.
Pearle
,
A. D.
,
Warren
,
R. F.
, and
Rodeo
,
S. A.
,
2005
, “
Basic Science of Articular Cartilage and Osteoarthritis
,”
Clin. Sports Med.
,
24
(
1
), pp.
1
12
.10.1016/j.csm.2004.08.007
11.
Sun
,
Y.
,
2012
, “
Histological Examination of Collagen and Proteoglycan Changes in Osteoarthritic Menisci
,”
Open Rheumatol. J.
,
6
(
1
), pp.
24
32
.10.2174/1874312901206010024
12.
Maldonado
,
M.
, and
Nam
,
J.
,
2013
, “
The Role of Changes in Extracellular Matrix of Cartilage in the Presence of Inflammation on the Pathology of Osteoarthritis
,”
Biomed Res. Int.
,
2013
, p.
1
.10.1155/2013/284873
13.
Sah
,
R. L.-Y.
,
Kim
,
Y.-J.
,
Doong
,
J.-Y. H.
,
Grodzinsky
,
A. J.
,
Plass
,
A. H. K.
, and
Sandy
,
J. D.
,
1989
, “
Biosynthetic Response of Cartilage Explants to Dynamic Compression
,”
J. Orthop. Res.
,
7
(
5
), pp.
619
636
.10.1002/jor.1100070502
14.
Guilak
,
F.
,
Meyer
,
B. C.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1994
, “
The Effects of Matrix Compression on Proteoglycan Metabolism in Articular Cartilage Explants
,”
Osteoarthritis Cartilage
,
2
(
2
), pp.
91
101
.10.1016/S1063-4584(05)80059-7
15.
Fitzgerald
,
J. B.
,
Jin
,
M.
, and
Grodzinsky
,
A. J.
,
2006
, “
Shear and Compression Differentially Regulate Clusters of Functionally Related Temporal Transcription Patterns in Cartilage Tissue
,”
J. Biol. Chem.
,
281
(
34
), pp.
24095
24103
.10.1074/jbc.M510858200
16.
Kim
,
Y.-J.
,
Sah
,
R. L.
,
Grodzinsky
,
A. J.
,
Plaas
,
A. H.
, and
Sandy
,
J. D.
,
1994
, “
Mechanical Regulation of Cartilage Biosynthetic Behavior: Physical Stimuli
,”
Arch. Biochem. Biophys.
,
311
(
1
), pp.
1
12
.10.1006/abbi.1994.1201
17.
Buschmann
,
M. D.
,
Kim
,
Y.-J.
,
Wong
,
M.
,
Frank
,
E.
,
Hunziker
,
E. B.
, and
Grodzinsky
,
A. J.
,
1999
, “
Stimulation of Aggrecan Synthesis in Cartilage Explants by Cyclic Loading is Localized to Regions of High Interstitial Fluid Flow1
,”
Arch. Biochem. Biophys.
,
366
(
1
), pp.
1
7
.10.1006/abbi.1999.1197
18.
Ingber
,
D. E.
,
1998
, “
Cellular Basis of Mechanotransduction
,”
Biol. Bull.
,
194
(
3
), pp.
323
327
.10.2307/1543102
19.
Wong
,
M.
,
Siegrist
,
M.
, and
Cao
,
X.
,
1999
, “
Cyclic Compression of Articular Cartilage Explants is Associated With Progressive Consolidation and Altered Expression Pattern of Extracellular Matrix Proteins
,”
Matrix Biol.
,
18
(
4
), pp.
391
399
.10.1016/S0945-053X(99)00029-3
20.
Kura
,
H.
,
Kitaoka
,
H. B.
,
Luo
,
Z.-P.
, and
An
,
K.-N.
,
1998
, “
Measurement of Surface Contact Area of the Ankle Joint
,”
Clin. Biomech.
,
13
(
4–5
), pp.
365
370
.10.1016/S0268-0033(98)00011-4
21.
Ateshian
,
G. A.
, and
Wang
,
H.
,
1995
, “
A Theoretical Solution for the Frictionless Rolling Contact of Cylindrical Biphasic Articular Cartilage Layers
,”
J. Biomech.
,
28
(
11
), pp.
1341
1355
.10.1016/0021-9290(95)00008-6
22.
Caligaris
,
M.
, and
Ateshian
,
G. A.
,
2008
, “
Effects of Sustained Interstitial Fluid Pressurization Under Migrating Contact Area, and Boundary Lubrication by Synovial Fluid, on Cartilage Friction
,”
Osteoarthritis Cartilage
,
16
(
10
), pp.
1220
1227
.10.1016/j.joca.2008.02.020
23.
Ateshian
,
G. A.
,
2009
, “
The Role of Interstitial Fluid Pressurization in Articular Cartilage Lubrication
,”
J. Biomech.
,
42
(
9
), pp.
1163
1176
.10.1016/j.jbiomech.2009.04.040
24.
Bonnevie
,
E. D.
,
Baro
,
V. J.
,
Wang
,
L.
, and
Burris
,
D. L.
,
2011
, “
In Situ Studies of Cartilage Microtribology: Roles of Speed and Contact Area
,”
Tribol. Lett.
,
41
(
1
), pp.
83
95
.10.1007/s11249-010-9687-0
25.
Krishnan
,
R.
,
Mariner
,
E. N.
, and
Ateshian
,
G. A.
,
2005
, “
Effect of Dynamic Loading on the Frictional Response of Bovine Articular Cartilage
,”
J. Biomech.
,
38
(
8
), pp.
1665
1673
.10.1016/j.jbiomech.2004.07.025
26.
Boeth
,
H.
,
Duda
,
G. N.
,
Heller
,
M. O.
,
Ehrig
,
R. M.
,
Doyscher
,
R.
,
Jung
,
T.
,
Moewis
,
P.
,
Scheffler
,
S.
, and
Taylor
,
W. R.
,
2013
, “
Anterior Cruciate Ligament-Deficient Patients With Passive Knee Joint Laxity Have a Decreased Range of Anterior-Posterior Motion During Active Movements
,”
Am. J. Sports Med.
,
41
(
5
), pp.
1051
1057
.10.1177/0363546513480465
27.
Kaiser
,
J. M.
,
Vignos
,
M. F.
,
Kijowski
,
R.
,
Baer
,
G.
, and
Thelen
,
D. G.
,
2017
, “
Effect of Loading on In Vivo Tibiofemoral and Patellofemoral Kinematics of Healthy and ACL-Reconstructed Knees
,”
Am. J. Sports Med.
,
45
(
14
), pp.
3272
3279
.10.1177/0363546517724417
28.
Connolly
,
A.
,
FitzPatrick
,
D.
,
Moulton
,
J.
,
Lee
,
J.
, and
Lerner
,
A.
,
2008
, “
Tibiofemoral Cartilage Thickness Distribution and Its Correlation With Anthropometric Variables
,”
Proc. Inst. Mech. Eng., Part H
,
222
(
1
), pp.
29
39
.10.1243/09544119JEIM306
29.
Ateshian
,
G. A.
,
Soslowsky
,
L. J.
, and
Mow
,
V. C.
,
1991
, “
Quantitation of Articular Surface Topography and Cartilage Thickness in Knee Joints Using Stereophotogrammetry
,”
J. Biomech.
,
24
(
8
), pp.
761
776
.10.1016/0021-9290(91)90340-S
30.
Li
,
Y.
,
Frank
,
E. H.
,
Wang
,
Y.
,
Chubinskaya
,
S.
,
Huang
,
H.
, and
Grodzinsky
,
A. J.
,
2013
, “
Moderate Dynamic Compression Inhibits Pro-Catabolic Response of Cartilage to Mechanical Injury, Tumor Necrosis Factor-α and Interleukin-6, but Accentuates Degradation Above a Strain Threshold
,”
Osteoarthritis Cartilage
,
21
(
12
), pp.
1933
1941
.10.1016/j.joca.2013.08.021
31.
Geuzaine
,
C.
, and
Remacle
,
J.-F.
,
2009
, “
GMSH: A 3-D Finite Element Mesh Generator With Built-In Pre-and Post-Processing Facilities
,”
Int. J. Numer. Methods Eng.
,
79
(
11
), pp.
1309
1331
.10.1002/nme.2579
32.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.10.1115/1.4005694
33.
Mow
,
V. C.
,
Ratcliffe
,
A.
, and
Poole
,
A. R.
,
1992
, “
Cartilage and Diarthrodial Joints as Paradigms for Hierarchical Materials and Structures
,”
Biomaterials
,
13
(
2
), p.
67
.10.1016/0142-9612(92)90001-5
34.
Reynaud
,
B.
, and
Quinn
,
T. M.
,
2006
, “
Anisotropic Hydraulic Permeability in Compressed Articular Cartilage
,”
J. Biomech.
,
39
(
1
), pp.
131
137
.10.1016/j.jbiomech.2004.10.015
35.
Buschmann
,
M. D.
,
Soulhat
,
J.
,
Shirazi-Adl
,
A.
,
Jurvelin
,
J. S.
, and
Hunziker
,
E. B.
,
1997
, “
Confined Compression of Articular Cartilage: Linearity in Ramp and Sinusoidal Tests and the Importance of Interdigitation and Incomplete Confinement
,”
J. Biomech.
,
31
(
2
), pp.
171
178
.10.1016/S0021-9290(97)00124-3
36.
Ateshian
,
G. A.
,
Rajan
,
V.
,
Chahine
,
N. O.
,
Canal
,
C. E.
, and
Hung
,
C. T.
,
2009
, “
Modeling the Matrix of Articular Cartilage Using a Continuous Fiber Angular Distribution Predicts Many Observed Phenomena
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061003
.10.1115/1.3118773
37.
Meng
,
Q.
,
Jin
,
Z.
,
Wilcox
,
R.
, and
Fisher
,
J.
,
2014
, “
Computational Investigation of the Time-Dependent Contact Behaviour of the Human Tibiofemoral Joint Under Body Weight
,”
Proc. Inst. Mech. Eng., Part H
,
228
(
11
), pp.
1193
1207
.10.1177/0954411914559737
38.
Verteramo
,
A.
, and
Seedhom
,
B. B.
,
2004
, “
Zonal and Directional Variations in Tensile Properties of Bovine Articular Cartilage With Special Reference to Strain Rate Variation
,”
Biorheology
,
41
(
3–4
), pp.
203
213
.http://europepmc.org/abstract/MED/15299253
39.
Chegini
,
S.
, and
Ferguson
,
S. J.
,
2010
, “
Time and Depth Dependent Poisson's Ratio of Cartilage Explained by an Inhomogeneous Orthotropic Fiber Embedded Biphasic Model
,”
J. Biomech.
,
43
(
9
), pp.
1660
1666
.10.1016/j.jbiomech.2010.03.006
40.
Meng
,
Q.
,
An
,
S.
,
Damion
,
R. A.
,
Jin
,
Z.
,
Wilcox
,
R.
,
Fisher
,
J.
, and
Jones
,
A.
,
2017
, “
The Effect of Collagen Fibril Orientation on the Biphasic Mechanics of Articular Cartilage
,”
J. Mech. Behav. Biomed. Mater.
,
65
, pp.
439
453
.10.1016/j.jmbbm.2016.09.001
41.
Athanasiou
,
K. A.
,
Rosenwasser
,
M. P.
,
Buckwalter
,
A.
,
Malinin
,
S. T. I.
, and
Mow
,
V. C.
,
1991
, “
Interspecies Comparisons of In Situ Intrinsic Mechanical Properties of Distal Femoral Cartilage
,”
Orthopeadic Res.
,
9
(
3
), pp.
330
340
.10.1002/jor.1100090304
42.
Eckstein
,
F.
,
Lemberger
,
B.
,
Gratzke
,
C.
,
Hudelmaier
,
M.
,
Glaser
,
C.
,
Englmeier
,
K.-H.
, and
Reiser
,
M.
,
2005
, “
In Vivo Cartilage Deformation After Different Types of Activity and Its Dependence on Physical Training Status
,”
Ann. Rheum. Dis.
,
64
(
2
), pp.
291
295
.10.1136/ard.2004.022400
43.
Pawaskar
,
S. S.
,
Jin
,
Z. M.
, and
Fisher
,
J.
,
2007
, “
Modelling of Fluid Support Inside Articular Cartilage During Sliding
,”
Proc. Inst. Mech. Eng., Part J
,
221
(
3
), pp.
165
174
.10.1243/13506501JET241
44.
Accardi
,
M. A.
,
Dini
,
D.
, and
Cann
,
P. M.
,
2011
, “
Experimental and Numerical Investigation of the Behaviour of Articular Cartilage Under Shear Loading—Interstitial Fluid Pressurisation and Lubrication Mechanisms
,”
Tribol. Int.
,
44
(
5
), pp.
565
578
.10.1016/j.triboint.2010.09.009
45.
Aydelotte
,
M. B.
, and
Kuettner
,
K. E.
,
1988
, “
Differences Between Sub-Populations of Cultured Bovine Articular Chondrocytes—I: Morphology and Cartilage Matrix Production
,”
Connect. Tissue Res.
,
18
(
3
), pp.
205
222
.10.3109/03008208809016808
46.
Coates
,
E. E.
, and
Fisher
,
J. P.
,
2010
, “
Phenotypic Variations in Chondrocyte Subpopulations and Their Response to In Vitro Culture and External Stimuli
,”
Ann. Biomed. Eng.
,
38
(
11
), pp.
3371
3388
.10.1007/s10439-010-0096-1
47.
Herberhold
,
C.
,
Faber
,
S.
,
Stammberger
,
T.
,
Steinlechner
,
M.
,
Putz
,
R.
,
Englmeier
,
K. H.
,
Reiser
,
M.
, and
Eckstein
,
F.
,
1999
, “
In Situ Measurement of Articular Cartilage Deformation in Intact Femoropatellar Joints Under Static Loading
,”
J. Biomech.
,
32
(
12
), pp.
1287
1295
.10.1016/S0021-9290(99)00130-X
48.
Hu
,
J. C.
, and
Athanasiou
,
K. A.
,
2003
, “
Structure and Function of Ar-ticular Cartilage
,”
Handbook of Histology Methods for Bone and Cartilage
,
Humana Press
,
Totowa, NJ
.
49.
Martel-Pelletier
,
J.
,
Boileau
,
C.
,
Pelletier
,
J. P.
, and
Roughley
,
P. J.
,
2008
, “
Cartilage in Normal and Osteoarthritis Conditions
,”
Best Pract. Res., Clin. Rheumatol.
,
22
(
2
), pp.
351
384
.10.1016/j.berh.2008.02.001
50.
Alexopoulos
,
L. G.
,
Williams
,
G. M.
,
Upton
,
M. L.
,
Setton
,
L. A.
, and
Guilak
,
F.
,
2005
, “
Osteoarthritic Changes in the Biphasic Mechanical Properties of the Chondrocyte Pericellular Matrix in Articular Cartilage
,”
J. Biomech.
,
38
(
3
), pp.
509
517
.10.1016/j.jbiomech.2004.04.012
You do not currently have access to this content.