Abstract

The accurate measurement of full six degrees-of-freedom (6DOFs) knee joint kinematics is prohibited by soft tissue artifact (STA), which remains the greatest source of error. The purpose of this study was to present and assess a new femoral clamp to reduce STA at the thigh. It was hypothesized that the device can preserve the natural knee joint kinematics pattern and outperform a conventional marker mounted rigid cluster during gait. Six healthy subjects were asked to walk barefoot on level ground with a cluster marker set (cluster gait) followed by a cluster-clamp-merged marker set (clamp gait) and their kinematics was measured using the cluster method in cluster gait and the cluster and clamp methods simultaneously in clamp gait. Two operators performed the gait measurement. A 6DOFs knee joint model was developed to enable comparison with the gold standard knee joint kinematics measured using a dual fluoroscopic imaging technique. One-dimensional (1D) paired t-tests were used to compare the knee joint kinematics waveforms between cluster gait and clamp gait. The accuracy was assessed in terms of the root-mean-square error (RMSE), coefficient of determination, and Bland–Altman plots. Interoperator reliability was assessed using the intraclass correlation coefficient (ICC). The result showed that the femoral clamp did not change the walking speed and knee joint kinematics waveforms. Additionally, clamp gait reduced the rotation and translation errors in the transverse plane and improved the interoperator reliability when compared to the rigid cluster method, suggesting a more accurate and reliable measurement of knee joint kinematics.

References

1.
Ganjikia
,
S.
,
Duval
,
N.
,
Yahia
,
L.
, and
De Guise
,
J.
,
2000
, “
Three-Dimensional Knee Analyzer Validation by Simple Fluoroscopic Study
,”
Knee
,
7
(
4
), pp.
221
231
.10.1016/S0968-0160(00)00063-6
2.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
3.
Bull
,
A. M. J.
, and
Amis
,
A. A.
,
1998
, “
Knee Joint Motion: Description and Measurement
,”
Proc. Inst. Mech. Eng. H.
,
212
(
5
), pp.
357
372
.10.1243/0954411981534132
4.
Manal
,
K.
,
Gardinier
,
E.
,
Buchanan
,
T. S.
, and
Snyder-Mackler
,
L.
,
2015
, “
A More Informed Evaluation of Medial Compartment Loading: The Combined Use of the Knee Adduction and Flexor Moments
,”
Osteoarthr. Cartil.
,
23
(
7
), pp.
1107
1111
.10.1016/j.joca.2015.02.779
5.
Landry
,
S. C.
,
McKean
,
K. A.
,
Hubley-Kozey
,
C. L.
,
Stanish
,
W. D.
, and
Deluzio
,
K. J.
,
2007
, “
Knee Biomechanics of Moderate OA Patients Measured During Gait at a Self-Selected and Fast Walking Speed
,”
J. Biomech.
,
40
(
8
), pp.
1754
1761
.10.1016/j.jbiomech.2006.08.010
6.
Dennis
,
D. A.
,
Mahfouz
,
M. R.
,
Komistek
,
R. D.
, and
Hoff
,
W.
,
2005
, “
In Vivo Determination of Normal and Anterior Cruciate Ligament-Deficient Knee Kinematics
,”
J. Biomech.
,
38
(
2
), pp.
241
253
.10.1016/j.jbiomech.2004.02.042
7.
Defrate
,
L. E.
,
Papannagari
,
R.
,
Gill
,
T. J.
,
Moses
,
J. M.
,
Pathare
,
N. P.
, and
Li
,
G.
,
2006
, “
The 6 Degrees of Freedom Kinematics of the Knee After Anterior Cruciate Ligament Deficiency: An In Vivo Imaging Analysis
,”
Am. J. Sports Med.
,
34
(
8
), pp.
1240
1246
.10.1177/0363546506287299
8.
Li
,
J. S.
,
Tsai
,
T. Y.
,
Felson
,
D. T.
,
Li
,
G.
, and
Lewis
,
C. L.
,
2017
, “
Six Degree-of-Freedom Knee Joint Kinematics in Obese Individuals With Knee Pain During Gait
,”
PLoS One
,
12
(
3
), p. e0174663.10.1371/journal.pone.0174663
9.
Georgoulis
,
A. D.
,
Papadonikolakis
,
A.
,
Papageorgiou
,
C. D.
,
Mitsou
,
A.
, and
Stergiou
,
N.
,
2003
, “
Three-Dimensional Tibiofemoral Kinematics of the Anterior Cruciate Ligament-Deficient and Reconstructed Knee During Walking
,”
Am. J. Sports Med.
,
31
(
1
), pp.
75
79
.10.1177/03635465030310012401
10.
Azmi
,
N. L.
,
Ding
,
Z.
,
Xu
,
R.
, and
Bull
,
A. M. J.
,
2018
, “
Activation of Biceps Femoris Long Head Reduces Tibiofemoral Anterior Shear Force and Tibial Internal Rotation Torque in Healthy Subjects
,”
Plos One
,
13
(
1
), p.
e0190672
.10.1371/journal.pone.0190672
11.
Zingde
,
S. M.
,
Leszko
,
F.
,
Sharma
,
A.
,
Mahfouz
,
M. R.
,
Komistek
,
R. D.
, and
Dennis
,
D. A.
,
2014
, “
In Vivo Determination of Cam-Post Engagement in Fixed and Mobile-Bearing TKA Knee
,”
Clin. Orthop. Relat. Res.
,
472
(
1
), pp.
254
262
.10.1007/s11999-013-3257-3
12.
Komistek
,
R. D.
,
Mahfouz
,
M. R.
,
Bertin
,
K. C.
,
Rosenberg
,
A.
, and
Kennedy
,
W.
,
2008
, “
In Vivo Determination of Total Knee Arthroplasty Kinematics. A Multicenter Analysis of an Asymmetrical Posterior Cruciate Retaining Total Knee Arthroplasty
,”
J. Arthroplasty
,
23
(
1
), pp.
41
50
.10.1016/j.arth.2007.01.016
13.
Kang
,
K. T.
,
Koh
,
Y. G.
,
Son
,
J.
,
Jung
,
M.
,
Oh
,
S.
,
Kim
,
S. J.
, and
Kim
,
S. H.
,
2018
, “
Biomechanical Influence of Deficient Posterolateral Corner Structures on Knee Joint Kinematics: A Computational Study
,”
J. Orthop. Res.
,
36
(
8
), pp.
2202
2208
.10.1002/jor.23871
14.
Biswas
,
D.
,
Bible
,
J. E.
,
Bohan
,
M.
,
Simpson
,
A. K.
,
Whang
,
P. G.
, and
Grauer
,
J. N.
,
2009
, “
Radiation Exposure From Musculoskeletal Computerized Tomographic Scans
,”
J. Bone. Jt. Surg. Am.
,
91
(
8
), pp.
1882
1889
.10.2106/JBJS.H.01199
15.
Lin
,
C. C.
,
Zhang
,
S.
,
Frahm
,
J.
,
Lu
,
T. W.
,
Hsu
,
C. Y.
, and
Shih
,
T. F.
,
2013
, “
A Slice-to-Volume Registration Method Based on Real-Time Magnetic Resonance Imaging for Measuring Three-Dimensional Kinematics of the Knee
,”
Med. Phys.
,
40
(
10
), p.
102302
.10.1118/1.4820369
16.
Lu
,
T.
,
Tsai
,
T.
,
Kuo
,
M.
,
Hsu
,
H.
, and
Chen
,
H.
,
2008
, “
In Vivo Three-Dimensional Kinematics of the Normal Knee During Active Extension Under Unloaded and Loaded Conditions Using Single-Plane Fluoroscopy
,”
Med. Eng. Phys.
,
30
(
8
), pp.
1004
1012
.10.1016/j.medengphy.2008.03.001
17.
Ramsey
,
D. K.
, and
Wretenberg
,
P. F.
,
1999
, “
Biomechanics of the Knee: Methodological Considerations in the In Vivo Kinematic Analysis of the Tibiofemoral and Patellofemoral Joint
,”
Clin. Biomech.
,
14
(
9
), pp.
595
611
.10.1016/S0268-0033(99)00015-7
18.
Leardini
,
A.
,
Chiari
,
L.
,
Della
,
U.
, and
Cappozzo
,
A.
,
2005
, “
Human Movement Analysis Using Stereophotogrammetry—Part 3: Soft Tissue Artifact Assessment and Compensation
,”
Gait Posture.
,
21
(
2
), pp.
212
225
.10.1016/j.gaitpost.2004.05.002
19.
Souza
,
R. B.
,
Draper
,
C. E.
,
Fredericson
,
M.
, and
Powers
,
C. M.
,
2010
, “
Femur Rotation and Patellofemoral Joint Kinematics: A Weight-Bearing Magnetic Resonance Imaging Analysis
,”
J. Orthop. Sport. Phys. Ther.
,
40
(
5
), pp.
277
285
.10.2519/jospt.2010.3215
20.
Lafortune
,
M. A.
,
Cavanagh
,
P. R.
,
Sommer
,
H. J.
, and
Kalenak
,
A.
,
1992
, “
Three-Dimensional Kinematics of the Human Knee During Walking
,”
J. Biomech.
,
25
(
4
), pp.
347
357
.10.1016/0021-9290(92)90254-X
21.
Alam
,
M.
,
Bull
,
A. M. J.
,
Thomas
,
R. D.
, and
Amis
,
A. A.
,
2013
, “
A Clinical Device for Measuring Internal-External Rotational Laxity of the Knee
,”
Am. J. Sports Med.
,
41
(
1
), pp.
87
94
.10.1177/0363546512469874
22.
Cappozzo
,
A.
,
Catani
,
F.
,
Leardini
,
A.
,
Benedetti
,
M. G.
, and
Croce
,
U. D.
,
1996
, “
Position and Orientation in Space of Bones During Movement: Experimental Artefacts
,”
Clin. Biomech.
,
11
(
2
), pp.
90
100
.10.1016/0268-0033(95)00046-1
23.
Castelli
,
A.
,
Paolini
,
G.
,
Cereatti
,
A.
, and
Croce
,
U. D.
,
2015
, “
A 2D Markerless Gait Analysis Methodology: Validation on Healthy Subjects
,”
Comput. Math. Methods Med.
, 2015, p. 186780.10.1155/2015/186780
24.
Grigg
,
J.
,
Haakonssen
,
E.
,
Rathbone
,
E.
,
Orr
,
R.
, and
Keogh
,
J. W. L.
,
2018
, “
The Validity and Intra-Tester Reliability of Markerless Motion Capture to Analyse Kinematics of the BMX Supercross Gate Start
,”
Sport. Biomech.
,
17
(
3
), pp.
383
401
.10.1080/14763141.2017.1353129
25.
Kim
,
H. J.
,
Fernandez
,
J. W.
,
Akbarshahi
,
M.
,
Walter
,
J. P.
,
Fregly
,
B. J.
, and
Pandy
,
M. G.
,
2009
, “
Evaluation of Predicted Knee-Joint Muscle Forces During Gait Using an Instrumented Knee Implant
,”
J. Orthop. Res.
,
27
(
10
), pp.
1326
1331
.10.1002/jor.20876
26.
Clément
,
J.
,
Dumas
,
R.
,
Hagemeister
,
N.
, and
de Guise
,
J. A.
,
2015
, “
Soft Tissue Artifact Compensation in Knee Kinematics by Multi-Body Optimization: Performance of Subject-Specific Knee Joint Models
,”
J. Biomech.
,
48
(
14
), pp.
3796
3802
.10.1016/j.jbiomech.2015.09.040
27.
Cappello
,
A.
,
Stagni
,
R.
,
Fantozzi
,
S.
, and
Leardini
,
A.
,
2005
, “
Soft Tissue Artifact Compensation in Knee Kinematics by Double Anatomical Landmark Calibration: Performance of a Novel Method During Selected Motor Tasks
,”
IEEE Trans. Biomed. Eng.
,
52
(
6
), pp.
992
998
.10.1109/TBME.2005.846728
28.
Benoit
,
D. L.
,
Ramsey
,
D. K.
,
Lamontagne
,
M.
,
Xu
,
L.
,
Wretenberg
,
P.
, and
Renström
,
P.
,
2006
, “
Effect of Skin Movement Artifact on Knee Kinematics During Gait and Cutting Motions Measured In Vivo
,”
Gait Posture
,
24
(
2
), pp.
152
164
.10.1016/j.gaitpost.2005.04.012
29.
Lucchetti
,
L.
,
Cappozzo
,
A.
,
Cappello
,
A.
, and
Croce
,
U. D.
,
1998
, “
Skin Movement Artefact Assessment and Compensation in the Estimation of Knee-Joint Kinematics
,”
J. Biomech.
,
31
(
11
), pp.
977
984
.10.1016/S0021-9290(98)00083-9
30.
Benoit
,
D. L.
,
Damsgaard
,
M.
, and
Andersen
,
M. S.
,
2015
, “
Surface Marker Cluster Translation, Rotation, Scaling and Deformation: Their Contribution to Soft Tissue Artefact and Impact on Knee Joint Kinematics
,”
J. Biomech.
,
48
(
10
), pp.
2124
2129
.10.1016/j.jbiomech.2015.02.050
31.
Sati
,
M.
,
de Guise
,
J. A.
,
Larouche
,
S.
, and
Drouin
,
G.
,
1996
, “
Quantitative Assessment of Skin-Bone Movement at the Knee
,”
Knee.
,
3
(
3
), pp.
121
138
.10.1016/0968-0160(96)00210-4
32.
Soderkvist
,
I.
, and
Wedin
,
P. A.
,
1993
, “
Determining the Movements of the Skeleton Using Well-Configured Markers
,”
J. Biomech.
,
26
(
12
), pp.
1473
1477
.10.1016/0021-9290(93)90098-Y
33.
Carman
,
A. B.
, and
Milburn
,
P. D.
,
2006
, “
Determining Rigid Body Transformation Parameters From Ill-Conditioned Spatial Marker Co-Ordinates
,”
J. Biomech.
,
39
(
10
), pp.
1778
1786
.10.1016/j.jbiomech.2005.05.028
34.
Spoor
,
C. W.
, and
Veldpaus
,
F. E.
,
1980
, “
Rigid Body Motion Calculated From Spatial Co-Ordinates of Markers
,”
J. Biomech.
,
13
(
4
), pp.
391
393
.10.1016/0021-9290(80)90020-2
35.
Horn
,
B. K. P.
,
1987
, “
Closed-Form Solution of Absolute Orientation Using Unit Quaternions
,”
J. Opt. Soc. Am. A
,
4
(
4
), p.
629
.10.1364/JOSAA.4.000629
36.
Andriacchi
,
T. P.
,
Alexander
,
E. J.
,
Toney
,
M. K.
,
Dyrby
,
C.
, and
Sum
,
J.
,
1998
, “
A Point Cluster Method for In Vivo Motion Analysis: Applied to a Study of Knee Kinematics
,”
ASME J. Biomech. Eng.
,
120
(
6
), pp.
743
749
.10.1115/1.2834888
37.
Alexander
,
E. J.
, and
Andriacchi
,
T. P.
,
2001
, “
Correcting for Deformation in Skin-Based Marker Systems
,”
J. Biomech.
,
34
(
3
), pp.
355
361
.10.1016/S0021-9290(00)00192-5
38.
Potvin
,
B. M.
,
Shourijeh
,
M. S.
,
Smale
,
K. B.
, and
Benoit
,
D. L.
,
2017
, “
A Practical Solution to Reduce Soft Tissue Artifact Error at the Knee Using Adaptive Kinematic Constraints
,”
J. Biomech.
,
62
, pp.
124
131
.10.1016/j.jbiomech.2017.02.006
39.
Andersen
,
M. S.
,
Benoit
,
D. L.
,
Damsgaard
,
M.
,
Ramsey
,
D. K.
, and
Rasmussen
,
J.
,
2010
, “
Do Kinematic Models Reduce the Effects of Soft Tissue Artefacts in Skin Marker-Based Motion Analysis? an In Vivo Study of Knee Kinematics
,”
J. Biomech.
,
43
(
2
), pp.
268
273
.10.1016/j.jbiomech.2009.08.034
40.
Liu
,
T. W.
, and
O'Connor
,
J. J.
,
1999
, “
Bone Position Estimation From Skin Marker Co-Ordinates Using Global Optimisation With Joint Constraints
,”
J. Biomech.
,
32
(
2
), pp.
129
134
.10.1016/S0021-9290(98)00158-4
41.
Sati
,
M.
,
De Guise
,
J. A.
,
Larouche
,
S.
, and
Drouin
,
G.
,
1996
, “
Improving In Vivo Knee Kinematic Measurements: Application to Prosthetic Ligament Analysis
,”
Knee
,
3
(
4
), pp.
179
190
.10.1016/S0968-0160(96)00209-8
42.
Houck
,
J.
,
Yack
,
H. J.
, and
Cuddeford
,
T.
,
2004
, “
Validity and Comparisons of Tibiofemoral Orientations and Displacement Using a Femoral Tracking Device During Early to Mid Stance of Walking
,”
Gait Posture
,
19
(
1
), pp.
76
84
.10.1016/S0966-6362(03)00033-X
43.
Duffell
,
L. D.
,
Hope
,
N.
, and
McGregor
,
A. H.
,
2014
, “
Comparison of Kinematic and Kinetic Parameters Calculated Using a Cluster-Based Model and Vicon's Plug-in Gait
,”
Proc. Inst. Mech. Eng. H.
,
228
(
2
), pp.
206
210
.10.1177/0954411913518747
44.
Di Marco
,
R.
,
Rossi
,
S.
,
Racic
,
V.
,
Cappa
,
P.
, and
Mazzà
,
C.
,
2016
, “
Concurrent Repeatability and Reproducibility Analyses of Four Marker Placement Protocols for the Foot-Ankle Complex
,”
J. Biomech.
,
49
(
14
), pp.
3168
3176
.10.1016/j.jbiomech.2016.07.041
45.
Yu
,
B.
,
Gabriel
,
D.
,
Noble
,
L.
, and
An
,
K. N.
,
1999
, “
Estimate of the Optimum Cutoff Frequency for the Butterworth Low-Pass Digital Filter
,”
J. Appl. Biomech.
,
15
(
3
), pp.
318
329
.10.1123/jab.15.3.318
46.
Ding
,
Z.
,
Tsang
,
C. K.
,
Nolte
,
D.
,
Kedgley
,
A. E.
, and
Bull
,
A. M. J.
,
2019
, “
Improving Musculoskeletal Model Scaling Using an Anatomical Atlas: The Importance of Gender and Anthropometric Similarity to Quantify Joint Reaction Forces
,”
IEEE Trans. Biomed. Eng.
(accepted).10.1109/TBME.2019.2905956
47.
Cleather
,
D. J.
, and
Bull
,
A. M. J.
,
2015
, “
The Development of a Musculoskeletal Model of the Lower Limb: Introducing FREEBODY
,”
Proc. R. Soc. Open Sci.
,
2
(
6
), p.
140449
.10.1098/rsos.140449
48.
Ding
,
Z.
,
Nolte
,
D.
,
Kit Tsang
,
C.
,
Cleather
,
D. J.
,
Kedgley
,
A. E.
, and
Bull
,
A. M. J.
,
2016
, “
In Vivo Knee Contact Force Prediction Using Patient-Specific Musculoskeletal Geometry in a Segment-Based Computational Model
,”
ASME J. Biomech. Eng.
,
138
(
2
), p.
021018
.10.1115/1.4032412
49.
Kozanek
,
M.
,
Hosseini
,
A.
,
Liu
,
F.
,
Van de Velde
,
S. K.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2009
, “
Tibiofemoral Kinematics and Condylar Motion During the Stance Phase of Gait
,”
J. Biomech.
,
42
(
12
), pp.
1877
1884
.10.1016/j.jbiomech.2009.05.003
50.
Pataky
,
T. C.
,
2012
, “
One-Dimensional Statistical Parametric Mapping in Python
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
3
), pp.
295
301
.10.1080/10255842.2010.527837
51.
Koo
,
T. K.
, and
Li
,
M. Y.
,
2016
, “
Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research
,”
J. Chiropr. Med.
,
15
(
2
), pp.
155
163
.10.1016/j.jcm.2016.02.012
52.
Manal
,
K.
,
McClay
,
I.
,
Stanhope
,
S.
,
Richards
,
J.
, and
Galinat
,
B.
,
2000
, “
Comparison of Surface Mounted Markers and Attachment Methods in Estimating Tibial Rotations During Walking: An In Vivo Study
,”
Gait Posture
,
11
(
1
), pp.
38
45
.10.1016/S0966-6362(99)00042-9
53.
Akbarshahi
,
M.
,
Schache
,
A. G.
,
Fernandez
,
J. W.
,
Baker
,
R.
,
Banks
,
S.
, and
Pandy
,
M. G.
,
2010
, “
Non-Invasive Assessment of Soft-Tissue Artifact and Its Effect on Knee Joint Kinematics During Functional Activity
,”
J. Biomech.
,
43
(
7
), pp.
1292
1301
.10.1016/j.jbiomech.2010.01.002
54.
Richard
,
V.
,
Cappozzo
,
A.
, and
Dumas
,
R.
,
2017
, “
Comparative Assessment of Knee Joint Models Used in Multi-Body Kinematics Optimisation for Soft Tissue Artefact Compensation
,”
J Biomech
,
62
, pp.
95
101
.10.1016/j.jbiomech.2017.01.030
55.
Besier
,
T. F.
,
Sturnieks
,
D. L.
,
Alderson
,
J. A.
, and
Lloyd
,
D. G.
,
2003
, “
Repeatability of Gait Data Using a Functional Hip Joint Centre and a Mean Helical Knee Axis
,”
J. Biomech.
,
36
(
8
), pp.
1159
1168
.10.1016/S0021-9290(03)00087-3
56.
Labbe
,
D. R.
,
Hagemeister
,
N.
,
Tremblay
,
M.
, and
de Guise
,
J.
,
2008
, “
Reliability of a Method for Analyzing Three-Dimensional Knee Kinematics During Gait
,”
Gait Posture.
,
28
(
1
), pp.
170
174
.10.1016/j.gaitpost.2007.11.002
You do not currently have access to this content.