Abstract

Carotid artery stenosis is a form of atherosclerosis, where thrombus formation restricts the passage of blood through the carotid artery leading to irreversible damage in the brain tissue. The presence of stenosis in the carotid artery results in abnormal temperature maps on the external skin surface, which can be captured and quantified using noncontact/noninvasive infrared (IR) thermal imaging/thermography. In this study, a thermally charged in vitro carotid artery flow loop, using 0% and 75% stenosis models, was designed to study the thermal effect on the external skin surface. The carotid artery flow was encapsulated with polydimethylsiloxane (PDMS) resembling neck tissue, of which the external surface temperature maps were studied using IR thermography. Using the mean temperature as a threshold value, the resultant thermal image was processed and normalized. Between the two stenosis models, disruption in the thermal features corresponding to the presence of stenosis was observed. The method described in this study paves the path to experimentally study the thermal effect of the presence of stenosis in the carotid artery.

References

References
1.
Sanz
,
J.
, and
Fayad
,
Z. A.
,
2008
, “
Imaging of Atherosclerotic Cardiovascular Disease
,”
Nature
,
451
(
7181
), pp.
953
957
.10.1038/nature06803
2.
Saxena
,
A.
,
Ng
,
E. Y. K.
, and
Lim
,
S. T.
,
2019
, “
Imaging Modalities to Diagnose Carotid Artery Stenosis: Progress and Prospect
,”
Biomed. Eng. Online
,
18
(
66
), pp.
1
23
.10.1186/s12938-019-0685-7
3.
Capistrant
,
T. D.
, and
Gumnit
,
R. J.
,
1973
, “
Detecting Carotid Occlusive Disease by Thermography
,”
Stroke
,
4
(
1
), pp.
57
64
.10.1161/01.STR.4.1.57
4.
Morgan
,
P. B.
,
Smyth
,
J. V.
,
Tullo
,
A. B.
, and
Efron
,
N.
,
1999
, “
Ocular Temperature in Carotid Artery Stenosis
,”
Optom. Vis. Sci.
,
76
(
12
), pp.
850
854
.10.1097/00006324-199912000-00021
5.
Hofferberth
,
B.
,
Gottschaldt
,
M.
, and
Dykan
,
S.
,
1980
, “
Comparison of Doppler Sonography and Plate Thermography for Detection of Carotid Artery Stenosis
,”
Stroke.
,
11
(
1
), pp.
27
30
.10.1161/01.STR.11.1.27
6.
Yang
,
Y.
, and
Liu
,
J.
,
2018
, “
Detection of Atherosclerosis Through Mapping Skin Temperature Variation Caused by Carotid Atherosclerosis Plaques
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
3
), p.
031005
.10.1115/1.4004109
7.
Saxena
,
A.
,
Ng
,
E. Y. K.
,
Mathur
,
M.
,
Manchanda
,
C.
, and
Jajal
,
N. A.
,
2019
, “
Effect of Carotid Artery Stenosis on Neck Skin Tissue Heat Transfer
,”
Int. J. Therm. Sci.
,
145
(106010), pp.
1
12
.10.1016/j.ijthermalsci.2019.106010
8.
Kashefi
,
A.
,
Mahdinia
,
M.
,
Firoozabadi
,
B.
,
Amirkhosravi
,
M.
,
Ahmadi
,
G.
, and
Saidi
,
M. S.
,
2014
, “
Multidimensional Modeling of the Stenosed Carotid Artery: A Novel CAD Approach Accompanied by an Extensive Lumped Model
,”
Acta Mech. Sin.
,
30
(
2
), pp.
259
273
.10.1007/s10409-014-0047-4
9.
Perktold
,
K.
,
Peter
,
R. O.
,
Resch
,
M.
, and
Langs
,
G.
,
1991
, “
Pulsatile Non-Newtonian Blood Flow in Three- Dimensional Carotid Bifurcation Models: A Numerical Study of Flow Phenomena Under Different Bifurcation Angles
,”
J. Biomed. Eng.
,
13
(
6
), pp.
507
515
.10.1016/0141-5425(91)90100-L
10.
Hoving
,
A. M.
,
de Vries
,
E. E.
,
Mikhal
,
J.
,
de Borst
,
G. J.
, and
Slump
,
C. H.
,
2019
, “
A Systematic Review for the Design of In Vitro Flow Studies of the Carotid Artery Bifurcation
,”
Cardiovasc. Eng. Technol.
, 11, pp.
111
127
.10.1007/s13239-019-00448-9
11.
Zhou
,
H.
,
Meng
,
L.
,
Zhou
,
W.
,
Xin
,
L.
,
Xia
,
X.
,
Li
,
S.
,
Zheng
,
H.
, and
Niu
,
L.
,
2017
, “
Computational and Experimental Assessment of Influences of Hemodynamic Shear Stress on Carotid Plaque
,”
Biomed. Eng. Online
,
16
(
1
), pp.
1
11
.10.1186/s12938-017-0386-z
12.
Kabinejadian
,
F.
,
Cui
,
F.
,
Zhang
,
Z.
,
Ho
,
P.
, and
Leo
,
H. L.
,
2013
, “
A Novel Carotid Covered Stent Design: In Vitro Evaluation of Performance and Influence on the Blood Flow Regime at the Carotid Artery Bifurcation
,”
Ann. Biomed. Eng.
,
41
(
9
), pp.
1990
2002
.10.1007/s10439-013-0863-x
13.
Saxena
,
A.
,
Saha
,
V.
, and
Ng
,
E. Y. K.
,
2020
, “
Skin Temperature Maps as a Measure of Carotid Artery Stenosis
,”
Comput. Biol. Med.
,
116
, p.
103548
.10.1016/j.compbiomed.2019.103548
14.
Bommadevara
,
M.
, and
Zhu
,
L.
,
2002
, “
Temperature Difference Between the Body Core and Arterial Blood Supplied to the Brain During Hyperthermia or Hypothermia in Humans
,”
Biomech. Model Mechanobiol.
,
1
(
2
), pp.
137
149
.10.1007/s10237-002-0011-2
15.
Breeze
,
J.
,
West
,
A.
, and
Clasper
,
J.
,
2013
, “
Anthropometric Assessment of Cervical Neurovascular Structures Using CTA to Determine Zone-Speci Fi c Vulnerability to Penetrating Fragmentation Injuries
,”
Clin. Radiol.
,
68
(
1
), pp.
34
38
.10.1016/j.crad.2012.05.011
16.
Wada
,
T.
,
Kodaira
,
K.
,
Fujishiro
,
K.
, and
Okamura
,
T.
,
1991
, “
Correlation of Common Carotid Flow Volume Measured by Ultrasonic Quantitative Flowmeter With Pathological Findings
,”
Stroke
,
22
(
3
), pp.
319
323
.10.1161/01.STR.22.3.319
17.
Ma
,
I. W. Y.
,
Caplin
,
J. D.
,
Azad
,
A.
,
Wilson
,
C.
,
Fifer
,
M. A.
,
Bagchi
,
A.
,
Liteplo
,
A. S.
, and
Noble
,
V. E.
,
2017
, “
Correlation of Carotid Blood Flow and Corrected Carotid Flow Time With Invasive Cardiac Output Measurements
,”
Crit. Ultrasound J.
,
9
(
1
), pp.
1
8
.10.1186/s13089-017-0065-0
18.
Saxena
,
A.
,
Ng
,
E. Y. K.
,
Manchanda
,
C.
, and
Canchi
,
T.
,
2020
, “
Cardiac Thermal Pulse at the Neck-Skin Surface as a Measure of Stenosis in the Carotid Artery
,”
Therm. Sci. Eng. Prog.
,
19
(
100603
), pp.
1
8
.10.1016/j.tsep.2020.100603
19.
Öner
,
M.
, and
Deveci Kocakoç
,
İ.
,
2017
, “
JMASM 49: A Compilation of Some Popular Goodness of Fit Tests for Normal Distribution: Their Algorithms and MATLAB Codes (MATLAB)
,”
J. Mod. Appl. Stat. Methods
,
16
(
2
), pp.
547
575
.10.22237/jmasm/1509496200
20.
Gibbons
,
J. D.
, and
Chakraborti
,
S.
,
1992
,
Nonparametric Statistical Inference
,
Marcel Dekker
,
New York
.
21.
Schoning
,
M.
,
Walter
,
J.
, and
Scheel
,
P.
,
1994
, “
Estimation of Cerebral Blood Flow Through Color Duplex Sonography of the Carotid and Vertebral Arteries in Healthy Adults
,”
Stroke
,
25
(
1
), pp.
17
22
.10.1161/01.STR.25.1.17
22.
Blackshear
,
W. M.
,
Phillips
,
D. J.
,
Chikos
,
P. M.
,
Harley
,
J. D.
,
Thiele
,
B. L.
, and
Strandness
,
D. E.
,
1980
, “
Carotid Artery Velocity Patterns in Normal and Stenotic Vessels
,”
Stroke
,
11
(
1
), pp.
67
71
.10.1161/01.STR.11.1.67
23.
von Reutern
,
G.-M.
,
Goertler
,
M.-W.
,
Bornstein
,
N. M.
,
Sette
,
M. D.
,
Evans
,
D. H.
,
Goertler
,
M.-W.
,
Hetzel
,
A.
,
Kaps
,
M.
,
Perren
,
F.
,
Razumovky
,
A.
,
Shiogai
,
T.
,
Titianova
,
E.
,
Traubner
,
P.
,
Venketasubramanian
,
N.
,
Wong
,
L. K. S.
, and
Yasaka
,
M.
,
2012
, “
Grading Carotid Stenosis Using Ultrasonic Methods
,”
Stroke
,
43
(
3
), pp.
916
921
.10.1161/STROKEAHA.111.636084
24.
Shmelev
,
A.
,
Ganti
,
A.
,
Hosseini
,
M.
,
Wilkerson
,
D.
,
Darwazeh
,
G.
, and
Zatina
,
M.
,
2020
, “
Duplex Criteria for Grading of External Carotid Stenosis
,”
Ann. Vasc. Surg.
,
63
, pp.
319
324
.10.1016/j.avsg.2019.07.010
25.
Hung
,
P.
,
Lee
,
K.
, and
Tsai
,
L.
,
2013
, “
Contact-Free Heart Rate Measurement Using Multiple Video Data
,”
AIP Conf. Proc.
, 1559(1), pp.
57
66
. 10.1063/1.4824996
26.
Sun
,
N.
,
Garbey
,
M.
,
Merla
,
A.
, and
Pavlidis
,
I.
,
2005
, “
Imaging the Cardiovascular Pulse
,”
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
,
2
, pp.
416
421
.10.1109/CVPR.2005.184
27.
Saxena
,
A.
,
Ng
,
E. Y. K.
, and
Lim
,
S. T.
,
2019
, “
Infrared (IR) Thermography as a Potential Screening Modality for Carotid Artery Stenosis
,”
Comput. Biol. Med.
,
113
, p.
103419
.10.1016/j.compbiomed.2019.103419
You do not currently have access to this content.