Abstract

Mechanical interactions between cells and their surrounding extracellular matrix (ECM) guide many fundamental cell behaviors. Native connective tissue consists of highly organized, 3D networks of ECM fibers with complex, nonlinear mechanical properties. The most abundant stromal matrix component is fibrillar type I collagen, which often possesses a wavy, crimped morphology that confers strain- and load-dependent nonlinear mechanical behavior. Here, we established a new and simple method for engineering electrospun fibrous matrices composed of dextran vinyl sulfone (DexVS) with controllable crimped structure. A hydrophilic peptide was functionalized to DexVS matrices to trigger swelling of individual hydrogel fibers, resulting in crimped microstructure due to the fixed anchorage of fibers. Mechanical characterization of these matrices under tension confirmed orthogonal control over nonlinear stress–strain responses and matrix stiffness. We next examined ECM mechanosensing of individual endothelial cells (ECs) and found that fiber crimp promoted physical matrix remodeling alongside decreases in cell spreading, focal adhesion area, and nuclear localization of Yes-associated protein (YAP). These changes corresponded to an increase in migration speed, along with evidence for long-range interactions between neighboring cells in crimped matrices. Interestingly, when ECs were seeded at high density in crimped matrices, capillary-like networks rapidly assembled and contained tube-like cellular structures wrapped around bundles of synthetic matrix fibers due to increased physical reorganization of matrix fibers. Our work provides an additional level of mechanical and architectural tunability to synthetic fibrous matrices and implicates a critical role for mechanical nonlinearity in EC mechanosensing and network formation.

References

References
1.
Fung
,
Y. C.
,
1967
, “
Elasticity of Soft Tissues in Simple Elongation
,”
Am. J. Physiol.
,
213
(
6
), pp.
1532
1544
.10.1152/ajplegacy.1967.213.6.1532
2.
Storm
,
C.
,
Pastore
,
J. J.
,
MacKintosh
,
F. C.
,
Lubensky
,
T. C.
, and
Janmey
,
P. A.
,
2005
, “
Nonlinear Elasticity in Biological Gels
,”
Nature
,
435
(
7039
), pp.
191
194
.10.1038/nature03521
3.
Hiltner
,
A.
,
Cassidy
,
J. J.
, and
Baer
,
E.
,
1985
, “
Mechanical Properties of Biological Polymers
,”
Annu. Rev. Mater. Sci.
,
15
(
1
), pp.
455
482
.10.1146/annurev.ms.15.080185.002323
4.
Rigby
,
B. J.
,
Hirai
,
N.
,
Spikes
,
J. D.
, and
Eyring
,
H.
,
1959
, “
The Mechanical Properties of Rat Tail Tendon
,”
J. Gen. Physiol.
,
43
(
2
), pp.
265
283
.10.1085/jgp.43.2.265
5.
Diamant
,
J.
,
Keller
,
A.
,
Baer
,
E.
,
Litt
,
M.
, and
Arridge
,
R. G.
,
1972
, “
Collagen; Ultrastructure and Its Relation to Mechanical Properties as a Function of Ageing
,”
Proc. R. Soc. London. Ser. B. Biol. Sci.
,
180
(
60
), pp.
293
315
.10.1098/rspb.1972.0019
6.
Mauck
,
R. L.
,
Baker
,
B. M.
,
Nerurkar
,
N. L.
,
Burdick
,
J. A.
,
Li
,
W.-J. J.
,
Tuan
,
R. S.
, and
Elliott
,
D. M.
,
2009
, “
Engineering on the Straight and Narrow: The Mechanics of Nanofibrous Assemblies for Fiber-Reinforced Tissue Regeneration
,”
Tissue Eng. Part B Rev.
,
15
(
2
), pp.
171
193
.10.1089/ten.teb.2008.0652
7.
Sill
,
T. J.
, and
von Recum
,
H. A.
,
2008
, “
Electrospinning: Applications in Drug Delivery and Tissue Engineering
,”
Biomaterials
,
29
(
13
), pp.
1989
2006
.10.1016/j.biomaterials.2008.01.011
8.
Pham
,
Q. P.
,
Sharma
,
U.
, and
Mikos
,
A. G.
,
2006
, “
Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review
,”
Tissue Eng.
,
12
(
5
), pp.
1197
211
.10.1089/ten.2006.12.1197
9.
Lin
,
T.
,
Wang
,
H.
, and
Wang
,
X.
,
2005
, “
Self-Crimping Bicomponent Nanofibers Electrospun From Polyacrylonitrile and Elastomeric Polyurethane
,”
Adv. Mater.
,
17
(
22
), pp.
2699
2703
.10.1002/adma.200500901
10.
Varesano
,
A.
,
Montarsolo
,
A.
, and
Tonin
,
C.
,
2007
, “
Crimped Polymer Nanofibres by Air-Driven Electrospinning
,”
Eur. Polym. J.
,
43
(
7
), pp.
2792
2798
.10.1016/j.eurpolymj.2007.04.023
11.
Liu
,
Y.
,
Zhang
,
X.
,
Xia
,
Y.
, and
Yang
,
H.
,
2010
, “
Magnetic-Field-Assisted Electrospinning of Aligned Straight and Wavy Polymeric Nanofibers
,”
Adv. Mater.
,
22
(
22
), pp.
2454
2457
.10.1002/adma.200903870
12.
Liu
,
W.
,
Lipner
,
J.
,
Moran
,
C. H.
,
Feng
,
L.
,
Li
,
X.
,
Thomopoulos
,
S.
, and
Xia
,
Y.
,
2015
, “
Generation of Electrospun Nanofibers With Controllable Degrees of Crimping Through a Simple, Plasticizer-Based Treatment
,”
Adv. Mater.
,
27
(
16
), pp.
2583
2588
.10.1002/adma.201500329
13.
Chao
,
P.-H. G.
,
Hsu
,
H. Y.
, and
Tseng
,
H. Y.
,
2014
, “
Electrospun Microcrimped Fibers With Nonlinear Mechanical Properties Enhance Ligament Fibroblast Phenotype
,”
Biofabrication
,
6
(
3
), p.
035008
.10.1088/1758-5082/6/3/035008
14.
Surrao
,
D. C.
,
Hayami
,
J. W. S.
,
Waldman
,
S. D.
, and
Amsden
,
B. G.
,
2010
, “
Self-Crimping, Biodegradable, Electrospun Polymer Microfibers
,”
Biomacromolecules
,
11
(
12
), pp.
3624
3629
.10.1021/bm101078c
15.
Surrao
,
D. C.
,
Waldman
,
S. D.
, and
Amsden
,
B. G.
,
2012
, “
Biomimetic Poly(Lactide) Based Fibrous Scaffolds for Ligament Tissue Engineering
,”
Acta Biomater.
,
8
(
11
), pp.
3997
4006
.10.1016/j.actbio.2012.07.012
16.
Surrao
,
D. C.
,
Fan
,
J. C. Y.
,
Waldman
,
S. D.
, and
Amsden
,
B. G.
,
2012
, “
A Crimp-Like Microarchitecture Improves Tissue Production in Fibrous Ligament Scaffolds in Response to Mechanical Stimuli
,”
Acta Biomater.
,
8
(
10
), pp.
3704
3713
.10.1016/j.actbio.2012.06.016
17.
Chen
,
F.
,
Hayami
,
J. W. S.
, and
Amsden
,
B. G.
,
2014
, “
Electrospun Poly(L-Lactide-Co-Acryloyl Carbonate) Fiber Scaffolds with a Mechanically Stable Crimp Structure for Ligament Tissue Engineering
,”
Biomacromolecules
,
15
(
5
), pp.
1593
1601
.10.1021/bm401813j
18.
Szczesny
,
S. E.
,
Driscoll
,
T. P.
,
Tseng
,
H. Y.
,
Liu
,
P. C.
,
Heo
,
S. J.
,
Mauck
,
R. L.
, and
Chao
,
P. H. G.
,
2017
, “
Crimped Nanofibrous Biomaterials Mimic Microstructure and Mechanics of Native Tissue and Alter Strain Transfer to Cells
,”
ACS Biomater. Sci. Eng.
,
3
(
11
), pp.
2869
2876
.10.1021/acsbiomaterials.6b00646
19.
Baker
,
B. M.
,
Trappmann
,
B.
,
Wang
,
W. Y.
,
Sakar
,
M. S.
,
Kim
,
I. L.
,
Shenoy
,
V. B.
,
Burdick
,
J. A.
, and
Chen
,
C. S.
,
2015
, “
Cell-Mediated Fibre Recruitment Drives Extracellular Matrix Mechanosensing in Engineered Fibrillar Microenvironments
,”
Nat. Mater.
,
14
(
12
), pp.
1262
1268
.10.1038/nmat4444
20.
Xie
,
J.
,
Bao
,
M.
,
Bruekers
,
M. C.
, and
Huck
,
W. T. S.
,
2017
, “
Collagen Gels With Different Fibrillar Microarchitectures Elicit Different Cellular Responses
,”
ACS Appl. Mater. Interfaces
,
9
(
23
), pp.
19630
19637
.10.1021/acsami.7b03883
21.
Provenzano
,
P. P.
,
Eliceiri
,
K. W.
,
Campbell
,
J. M.
,
Inman
,
D. R.
,
White
,
J. G.
, and
Keely
,
P. J.
,
2006
, “
Collagen Reorganization at the Tumor-Stromal Interface Facilitates Local Invasion
,”
BMC Med.
,
4
(
1
), pp.
1
15
.10.1186/1741-7015-4-38
22.
Wang
,
W. Y.
,
Davidson
,
C. D.
,
Lin
,
D.
, and
Baker
,
B. M.
,
2019
, “
Actomyosin Contractility-Dependent Matrix Stretch and Recoil Induces Rapid Cell Migration
,”
Nat. Commun.
,
10
(
1
), p.
1186
.10.1038/s41467-019-09121-0
23.
Davidson
,
C. D.
,
Wang
,
W. Y.
,
Zaimi
,
I.
,
Jayco
,
D. K. P.
, and
Baker
,
B. M.
,
2019
, “
Cell Force-Mediated Matrix Reorganization Underlies Multicellular Network Assembly
,”
Sci. Rep.
,
9
(
1
), p.
12
.10.1038/s41598-018-37044-1
24.
Davidson
,
C. D.
,
Jayco
,
D. K. P.
,
Matera
,
D. L.
,
DePalma
,
S. J.
,
Hiraki
,
H. L.
,
Wang
,
W. Y.
, and
Baker
,
B. M.
,
2020
, “
Myofibroblast Activation in Synthetic Fibrous Matrices Composed of Dextran Vinyl Sulfone
,”
Acta Biomater.
,
105
, pp.
78
86
.10.1016/j.actbio.2020.01.009
25.
Trappmann
,
B.
,
Baker
,
B. M.
,
Polacheck
,
W. J.
,
Choi
,
C. K.
,
Burdick
,
J. A.
, and
Chen
,
C. S.
,
2017
, “
Matrix Degradability Controls Multicellularity of 3D Cell Migration
,”
Nat. Commun.
,
8
(
1
), pp.
1
8
.10.1038/s41467-017-00418-6
26.
Yu
,
Y.
, and
Chau
,
Y.
,
2012
, “
One-Step ‘Click’ Method for Generating Vinyl Sulfone Groups on Hydroxyl-Containing Water-Soluble Polymers
,”
Biomacromolecules
,
13
(
3
), pp.
937
942
.10.1021/bm2014476
27.
Lake
,
S. P.
,
Miller
,
K. S.
,
Elliott
,
D. M.
, and
Soslowsky
,
L. J.
,
2009
, “
Effect of Fiber Distribution and Realignment on the Nonlinear and Inhomogeneous Mechanical Properties of Human Supraspinatus Tendon Under Longitudinal Tensile Loading
,”
J. Orthop. Res.
,
27
(
12
), pp.
1596
1602
.10.1002/jor.20938
28.
Wang
,
W. Y.
,
Lin
,
D.
,
Jarman
,
E. H.
,
Polacheck
,
W. J.
, and
Baker
,
B. M.
,
2019
, “
Functional Angiogenesis Requires Microenvironmental Cues Balancing Endothelial Cell Migration and Proliferation
,”
Lab Chip
,
20
(
6
), pp.
1153
1166
.10.1039/c9lc01170f
29.
Crocker
,
J. C.
, and
Grier
,
D. G.
,
1996
, “
Methods of Digital Video Microscopy for Colloidal Studies
,”
J. Colloid Interface Sci.
,
179
(
1
), pp.
298
310
.10.1006/jcis.1996.0217
30.
Abhilash
,
A. S.
,
Baker
,
B. M.
,
Trappmann
,
B.
,
Chen
,
C. S.
, and
Shenoy
,
V. B.
,
2014
, “
Remodeling of Fibrous Extracellular Matrices by Contractile Cells: Predictions From Discrete Fiber Network Simulations
,”
Biophys. J.
,
107
(
8
), pp.
1829
1840
.10.1016/j.bpj.2014.08.029
31.
Lynch
,
H. A.
,
Johannessen
,
W.
,
Wu
,
J. P.
,
Jawa
,
A.
, and
Elliott
,
D. M.
,
2003
, “
Effect of Fiber Orientation and Strain Rate on the Nonlinear Uniaxial Tensile Material Properties of Tendon
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
726
731
.10.1115/1.1614819
32.
Ricca
,
B. L.
,
Venugopalan
,
G.
, and
Fletcher
,
D. A.
,
2013
, “
To Pull or Be Pulled: Parsing the Multiple Modes of Mechanotransduction
,”
Curr. Opin. Cell Biol.
,
25
(
5
), pp.
558
564
.10.1016/j.ceb.2013.06.002
33.
Kanchanawong
,
P.
,
Shtengel
,
G.
,
Pasapera
,
A. M.
,
Ramko
,
E. B.
,
Davidson
,
M. W.
,
Hess
,
H. F.
, and
Waterman
,
C. M.
,
2010
, “
Nanoscale Architecture of Integrin-Based Cell Adhesions
,”
Nature
,
468
(
7323
), pp.
580
584
.10.1038/nature09621
34.
Grashoff
,
C.
,
Hoffman
,
B. D.
,
Brenner
,
M. D.
,
Zhou
,
R.
,
Parsons
,
M.
,
Yang
,
M. T.
,
McLean
,
M. A.
,
Sligar
,
S. G.
,
Chen
,
C. S.
,
Ha
,
T.
, and
Schwartz
,
M. A.
,
2010
, “
Measuring Mechanical Tension Across Vinculin Reveals Regulation of Focal Adhesion Dynamics
,”
Nature
,
466
(
7303
), pp.
263
266
.10.1038/nature09198
35.
Dupont
,
S.
,
Morsut
,
L.
,
Aragona
,
M.
,
Enzo
,
E.
,
Giulitti
,
S.
,
Cordenonsi
,
M.
,
Zanconato
,
F.
,
Le Digabel
,
J.
,
Forcato
,
M.
,
Bicciato
,
S.
,
Elvassore
,
N.
, and
Piccolo
,
S.
,
2011
, “
Role of Yap/TAZ in Mechanotransduction
,”
Nature
,
474
(
7350
), pp.
179
184
.10.1038/nature10137
36.
Caliari
,
S. R.
,
Vega
,
S. L.
,
Kwon
,
M.
,
Soulas
,
E. M.
, and
Burdick
,
J. A.
,
2016
, “
Dimensionality and Spreading Influence MSC Yap/TAZ Signaling in Hydrogel Environments
,”
Biomaterials
,
103
, pp.
314
323
.10.1016/j.biomaterials.2016.06.061
37.
Nardone
,
G.
,
Oliver-De La Cruz
,
J.
,
Vrbsky
,
J.
,
Martini
,
C.
,
Pribyl
,
J.
,
Skládal
,
P.
,
Pešl
,
M.
,
Caluori
,
G.
,
Pagliari
,
S.
,
Martino
,
F.
,
Maceckova
,
Z.
,
Hajduch
,
M.
,
Sanz-Garcia
,
A.
,
Pugno
,
N. M.
,
Stokin
,
G. B.
, and
Forte
,
G.
,
2017
, “
YAP Regulates Cell Mechanics by Controlling Focal Adhesion Assembly
,”
Nat. Commun.
,
8
(
1
), pp.
1
13
.10.1038/ncomms15321
38.
Sapir
,
L.
, and
Tzlil
,
S.
,
2017
, “
Talking Over the Extracellular Matrix: How Do Cells Communicate Mechanically?
,”
Semin. Cell Dev. Biol.
,
71
, pp.
99
105
.10.1016/j.semcdb.2017.06.010
39.
Califano
,
J. P.
, and
Reinhart-King
,
C. A.
,
2008
, “
A Balance of Substrate Mechanics and Matrix Chemistry Regulates Endothelial Cell Network Assembly
,”
Cell. Mol. Bioeng.
,
1
(
2–3
), pp.
122
132
.10.1007/s12195-008-0022-x
40.
Baker
,
B. M.
, and
Chen
,
C. S.
,
2012
, “
Deconstructing the Third Dimension: How 3D Culture Microenvironments Alter Cellular Cues
,”
J. Cell Sci.
,
125
(
13
), pp.
3015
3024
.10.1242/jcs.079509
41.
Hakkinen
,
K. M.
,
Harunaga
,
J. S.
,
Doyle
,
A. D.
, and
Yamada
,
K. M.
,
2011
, “
Direct Comparisons of the Morphology, Migration, Cell Adhesions, and Actin Cytoskeleton of Fibroblasts in Four Different Three-Dimensional Extracellular Matrices
,”
Tissue Eng. Part A
,
17
(
5–6
), pp.
713
724
.10.1089/ten.tea.2010.0273
42.
Doyle
,
A. D.
, and
Yamada
,
K. M.
,
2016
, “
Mechanosensing Via Cell-Matrix Adhesions in 3D Microenvironments
,”
Exp. Cell Res.
,
343
(
1
), pp.
60
66
.10.1016/j.yexcr.2015.10.033
43.
Lee
,
J. Y.
,
Chang
,
J. K. J.
,
Dominguez
,
A. A.
,
Lee
,
H.
,
Nam
,
S.
,
Chang
,
J. K. J.
,
Varma
,
S.
,
Qi
,
L. S.
,
West
,
R. B.
, and
Chaudhuri
,
O.
,
2019
, “
Yap-Independent Mechanotransduction Drives Breast Cancer Progression
,”
Nat. Commun.
,
10
(
1
), p.
1848
.10.1038/s41467-019-09755-0
44.
Peyton
,
S. R.
, and
Putnam
,
A. J.
,
2005
, “
Extracellular Matrix Rigidity Governs Smooth Muscle Cell Motility in a Biphasic Fashion
,”
J. Cell. Physiol.
,
204
(
1
), pp.
198
209
.10.1002/jcp.20274
45.
Mason
,
D. E.
,
Collins
,
J. M.
,
Dawahare
,
J. H.
,
Nguyen
,
T. D.
,
Lin
,
Y.
,
Voytik-Harbin
,
S. L.
,
Zorlutuna
,
P.
,
Yoder
,
M. C.
, and
Boerckel
,
J. D.
,
2019
, “
Yap and TAZ Limit Cytoskeletal and Focal Adhesion Maturation to Enable Persistent Cell Motility
,”
J. Cell Biol.
,
218
(
4
), pp.
1369
1389
.10.1083/jcb.201806065
46.
Wang
,
W. Y.
,
Pearson
,
A. T.
,
Kutys
,
M. L.
,
Choi
,
C. K.
,
Wozniak
,
M. A.
,
Baker
,
B. M.
, and
Chen
,
C. S.
,
2018
, “
Extracellular Matrix Alignment Dictates the Organization of Focal Adhesions and Directs Uniaxial Cell Migration
,”
APL Bioeng.
,
2
(
4
), p.
046107
.10.1063/1.5052239
47.
Wang
,
H.
,
Abhilash
,
A. S.
,
Chen
,
C. S.
,
Wells
,
R. G.
, and
Shenoy
,
V. B.
,
2014
, “
Long-Range Force Transmission in Fibrous Matrices Enabled by Tension-Driven Alignment of Fibers
,”
Biophys. J.
,
107
(
11
), pp.
2592
2603
.10.1016/j.bpj.2014.09.044
48.
Ma
,
X.
,
Schickel
,
M. E.
,
Stevenson
,
M. D.
,
Sarang-Sieminski
,
A. L.
,
Gooch
,
K. J.
,
Ghadiali
,
S. N.
, and
Hart
,
R. T.
,
2013
, “
Fibers in the Extracellular Matrix Enable Long-Range Stress Transmission Between Cells
,”
Biophys. J.
,
104
(
7
), pp.
1410
1418
.10.1016/j.bpj.2013.02.017
49.
Sopher
,
R. S.
,
Tokash
,
H.
,
Natan
,
S.
,
Sharabi
,
M.
,
Shelah
,
O.
,
Tchaicheeyan
,
O.
, and
Lesman
,
A.
,
2018
, “
Nonlinear Elasticity of the ECM Fibers Facilitates Efficient Intercellular Communication
,”
Biophys. J.
,
115
(
7
), pp.
1357
1370
.10.1016/j.bpj.2018.07.036
50.
Raghavan
,
S.
,
Nelson
,
C. M.
,
Baranski
,
J. D.
,
Lim
,
E.
, and
Chen
,
C. S.
,
2010
, “
Geometrically Controlled Endothelial Tubulogenesis in Micropatterned Gels
,”
Tissue Eng. Part A
,
16
(
7
), pp.
2255
2263
.10.1089/ten.tea.2009.0584
51.
Baranski
,
J. D.
,
Chaturvedi
,
R. R.
,
Stevens
,
K. R.
,
Eyckmans
,
J.
,
Carvalho
,
B.
,
Solorzano
,
R. D.
,
Yang
,
M. T.
,
Miller
,
J. S.
,
Bhatia
,
S. N.
, and
Chen
,
C. S.
,
2013
, “
Geometric Control of Vascular Networks to Enhance Engineered Tissue Integration and Function
,”
Proc. Natl. Acad. Sci.
,
110
(
19
), pp.
7586
7591
.10.1073/pnas.1217796110
52.
Baker
,
B. M.
,
Gee
,
A. O.
,
Metter
,
R. B.
,
Nathan
,
A. S.
,
Marklein
,
R. A.
,
Burdick
,
J. A.
, and
Mauck
,
R. L.
,
2008
, “
The Potential to Improve Cell Infiltration in Composite Fiber-Aligned Electrospun Scaffolds by the Selective Removal of Sacrificial Fibers
,”
Biomaterials
,
29
(
15
), pp.
2348
2358
.10.1016/j.biomaterials.2008.01.032
53.
Wu
,
J.
, and
Hong
,
Y.
,
2016
, “
Enhancing Cell Infiltration of Electrospun Fibrous Scaffolds in Tissue Regeneration
,”
Bioact. Mater.
,
1
(
1
), pp.
56
64
.10.1016/j.bioactmat.2016.07.001
You do not currently have access to this content.