Multibody kinematic optimization is frequently used to assess shoulder kinematics during manual wheelchair (MWC) propulsion, but multiple kinematics chains are available. It is hypothesized that these different kinematic chains affect marker tracking, shoulder kinematics, and resulting musculotendon (MT) lengths. In this study, shoulder kinematics and MT lengths obtained from four shoulder kinematic chains (open-loop thorax-clavicle-scapula-humerus (M1), closed-loop with contact ellipsoid (M2), scapula rhythm from regression equations (M3), and a single ball-and- socket joint between the thorax and the humerus (M4) were compared. Right-side shoulder kinematics from seven subjects were obtained with 34 reflective markers and a scapula locator using an optoelectronic motion capture system while propelling on a MWC simulator. Data were processed based on the four models. The results showed the impact of shoulder kinematic chains on all studied variables. Marker reconstruction errors were found to be similar between M1 and M2 and lower than for M3 and M4. Few degrees-of-freedom (DoF) were noticeably different between M1 and M2, but all shoulder DoFs were significantly affected between M1 and M4. As a consequence of differences in joint kinematics, MT lengths were affected by the kinematic chain definition. The contact ellipsoid (M2) was found as a good trade-off between marker tracking and penetration avoidance of the scapula. The regression-based model (M3) was less efficient due to limited humerus elevation during MWC propulsion, as well as the ball-and-socket model (M4) which appeared not suitable for upper limbs activities, including MWC propulsion.

References

1.
Boninger
,
M. L.
,
Dicianno
,
B. E.
,
Cooper
,
R. A.
,
Towers
,
J. D.
,
Koontz
,
A. M.
, and
Souza
,
A. L.
,
2003
, “
Shoulder Magnetic Resonance Imaging Abnormalities, Wheelchair Propulsion, and Gender1
,”
Arch. Phys. Med. Rehabil.
,
84
(
11
), pp.
1615
1620
.
2.
Mercer
,
J. L.
,
Boninger
,
M.
,
Koontz
,
A.
,
Ren
,
D.
,
Dyson-Hudson
,
T.
, and
Cooper
,
R.
,
2006
, “
Shoulder Joint Kinetics and Pathology in Manual Wheelchair Users
,”
Clin. Biomech.
,
21
(
8
), pp.
781
789
.
3.
Curtis
,
K. A.
,
Drysdale
,
G. A.
,
Lanza
,
R. D.
,
Kolber
,
M.
,
Vitolo
,
R. S.
, and
West
,
R.
,
1999
, “
Shoulder Pain in Wheelchair Users With Tetraplegia and Paraplegia
,”
Arch. Phys. Med. Rehabil.
,
80
(
4
), pp.
453
457
.
4.
Finley
,
M. A.
, and
Rodgers
,
M. M.
,
2004
, “
Prevalence and Identification of Shoulder Pathology in Athletic and Nonathletic Wheelchair Users With Shoulder Pain: A Pilot Study
,”
J. Rehabil. Res. Dev.
,
41
(
3B
), pp.
395
402
.
5.
Heyward
,
O. W.
,
Vegter
,
R. J. K.
,
de Groot
,
S..
, and
van der and Woude
,
L. H. V.
,
2017
, “
Shoulder Complaints in Wheelchair Athletes: A Systematic Review
,”
PLos One
,
12
(
11
), p.
e0188410
.
6.
Blana
,
D.
,
Hincapie
,
J. G.
,
Chadwick
,
E. K.
, and
Kirsch
,
R. F.
,
2008
, “
A Musculoskeletal Model of the Upper Extremity for Use in the Development of Neuroprosthetic Systems
,”
J. Biomech.
,
41
(
8
), pp.
1714
1721
.
7.
Odle
,
B.
,
Reinbolt
,
J.
,
Forrest
,
G.
, and
Dyson-Hudson
,
T.
,
2018
, “
Construction and Evaluation of a Model for Wheelchair Propulsion in an Individual With Tetraplegia
,”
Med. Biol. Eng. Comput.
,
57
(
2
), pp.
519
532
.
8.
van Drongelen
,
S.
,
van der Woude
,
L. H.
,
Janssen
,
T. W.
,
Angenot
,
E. L.
,
Chadwick
,
E. K.
, and
Veeger
,
D. H.
,
2005
, “
Glenohumeral Contact Forces and Muscle Forces Evaluated in Wheelchair-Related Activities of Daily Living in Able-Bodied Subjects Versus Subjects With Paraplegia and Tetraplegia
,”
Arch. Phys. Med. Rehabil.
,
86
(
7
), pp.
1434
1440
.
9.
Begon
,
M.
,
Andersen
,
M. S.
, and
Dumas
,
R.
,
2018
, “
Multibody Kinematics Optimization for the Estimation of Upper and Lower Limb Human Joint Kinematics: A Systematized Methodological Review
,”
ASME J. Biomech. Eng.
,
140
(
3
), p.
030801
.
10.
Lu
,
T.-W.
, and
O'Connor
,
J. J.
,
1999
, “
Bone Position Estimation From Skin Marker Co-Ordinates Using Global Optimisation With Joint Constraints
,”
J. Biomech.
,
32
(
2
), pp.
129
134
.
11.
Chèze
,
L.
,
Fregly
,
B. J.
, and
Dimnet
,
J.
,
1995
, “
A Solidification Procedure to Facilitate Kinematics Analyses Based on Video System Data
,”
J. Biomech.
,
28
(
7
), pp.
879
884
.
12.
Naaim
,
A.
,
Moissenet
,
F.
,
Duprey
,
S.
,
Begon
,
M.
, and
Chèze
,
L.
,
2017
, “
Effect of Various Upper Limb Multibody Models on Soft Tissue Artefact Correction: A Case Study
,”
J. Biomech.
,
62
, pp.
102
109
.
13.
Šenk
,
M.
, and
Chèze
,
L.
,
2010
, “
A New Method for Motion Capture of the Scapula Using an Optoelectronic Tracking Device: A Feasibility Study
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
3
), pp.
397
401
.
14.
Holzbaur
,
K. R. S.
,
Murray
,
W. M.
, and
Delp
,
S. L.
,
2005
, “
A Model of the Upper Extremity for Simulating Musculoskeletal Surgery and Analyzing Neuromuscular Control
,”
Ann. Biomed. Eng.
,
33
(
6
), pp.
829
840
.
15.
Saul
,
K. R.
,
Hu
,
X.
,
Goehler
,
C. M.
,
Vidt
,
M. E.
,
Daly
,
M.
,
Velisar
,
A.
, and
Murray
,
W. M.
,
2015
, “
Benchmarking of Dynamic Simulation Predictions in Two Software Platforms Using an Upper Limb Musculoskeletal Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
13
), pp.
1445
1458
.
16.
van der Helm
,
F. C. T.
,
1994
, “
A Finite Element Musculoskeletal Model of the Shoulder Mechanism
,”
J. Biomech.
,
27
(
5
), pp.
551
569
.
17.
Slowik
,
J. S.
,
Requejo
,
P. S.
,
Mulroy
,
S. J.
, and
Neptune
,
R. R.
,
2016
, “
The Influence of Wheelchair Propulsion Hand Pattern on Upper Extremity Muscle Power and Stress
,”
J. Biomech.
,
49
(
9
), pp.
1554
1561
.
18.
de Groot
,
J. H.
, and
Brand
,
R.
,
2001
, “
A Three-Dimensional Regression Model of the Shoulder Rhythm
,”
Clin. Biomech.
,
16
(
9
), pp.
735
743
.
19.
Duprey
,
S.
,
Naaim
,
A.
,
Moissenet
,
F.
,
Begon
,
M.
, and
Chèze
,
L.
,
2017
, “
Kinematic Models of the Upper Limb Joints for Multibody Kinematics Optimisation: An Overview
,”
J. Biomech.
,
62
, pp.
87
94
.
20.
Seth
,
A.
,
Sherman
,
M.
,
Eastman
,
P.
, and
Delp
,
S.
,
2010
, “
Minimal Formulation of Joint Motion for Biomechanisms
,”
Nonlinear Dyn.
,
62
(
1
), pp.
291
303
.
21.
Seth
,
A.
,
Matias
,
R.
,
Veloso
,
A. P.
, and
Delp
,
S. L.
,
2016
, “
A Biomechanical Model of the Scapulothoracic Joint to Accurately Capture Scapular Kinematics During Shoulder Movements
,”
PLoS One
,
11
(
1
), p.
e0141028
.
22.
Wu
,
G.
,
van der Helm
,
F. C. T.
,
Veeger
,
H. E. J. D.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X.
,
Werner
,
F. W.
, and
Buchholz
,
B.
, and
International Society of Biomechanics
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion–Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.
23.
Shaheen
,
A. F.
,
Alexander
,
C. M.
, and
Bull
,
A. M. J.
,
2011
, “
Tracking the Scapula Using the Scapula Locator With and Without Feedback From Pressure-Sensors: A Comparative Study
,”
J. Biomech.
,
44
(
8
), pp.
1633
1636
.
24.
Lempereur
,
M.
,
Brochard
,
S.
,
Mao
,
L.
, and
Rémy-Néris
,
O.
,
2012
, “
Validity and Reliability of Shoulder Kinematics in Typically Developing Children and Children With Hemiplegic Cerebral Palsy
,”
J. Biomech.
,
45
(
11
), pp.
2028
2034
.
25.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.
26.
Vasavada
,
A. N.
,
Li
,
S.
, and
Delp
,
S. L.
,
1998
, “
Influence of Muscle Morphometry and Moment Arms on the Moment-Generating Capacity of Human Neck Muscles
,”
Spine
,
23
(
4
), pp.
412
422
.
27.
Netter
,
F.
,
2011
,
Atlas D'anatomie Humaine
,
Elsevier Masson
,
Philadelphia, PA
.
28.
Söderkvist
,
I.
, and
Wedin
,
P. A.
,
1993
, “
Determining the Movements of the Skeleton Using Well-Configured Markers
,”
J. Biomech.
,
26
(
12
), pp.
1473
1477
.
29.
Legnani
,
G.
,
Casolo
,
F.
,
Righettini
,
P.
, and
Zappa
,
B.
,
1996
, “
A Homogeneous Matrix Approach to 3D Kinematics and Dynamics—I: Theory
,”
Mech. Mach. Theory
,
31
(
5
), pp.
573
587
.
30.
Koontz
,
A. M.
,
Cooper
,
R. A.
,
Boninger
,
M. L.
,
Souza
,
A. L.
, and
Fay
,
B. T.
,
2004
, “
Scapular Range of Motion in a Quasi-Wheelchair Push
,”
Int. J. Ind. Ergon.
,
33
(
3
), pp.
237
248
.
31.
Slavens
,
B. A.
,
Graf
,
A.
,
Krzak
,
J.
,
Vogel
,
L.
, and
Harris
,
G. F.
,
2011
, “
Upper Extremity Wheelchair Kinematics in Children With Spinal Cord Injury
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Boston, MA
, Aug. 30–Sept. 3, pp.
8158
8161
.
32.
Bourgain
,
M.
,
Hybois
,
S.
,
Thoreux
,
P.
,
Rouillon
,
O.
,
Rouch
,
P.
, and
Sauret
,
C.
,
2018
, “
Effect of Shoulder Model Complexity in Upper-Body Kinematics Analysis of the Golf Swing
,”
J. Biomech.
,
75
, pp.
154
158
.
33.
Blache
,
Y.
, and
Begon
,
M.
,
2018
, “
Influence of Shoulder Kinematic Estimate on Joint and Muscle Mechanics Predicted by Musculoskeletal Model
,”
IEEE Trans. Biomed. Eng.
,
65
(
4
), pp.
715
722
.
34.
Laitenberger
,
M.
,
Raison
,
M.
,
Périé
,
D.
, and
Begon
,
M.
,
2015
, “
Refinement of the Upper Limb Joint Kinematics and Dynamics Using a Subject-Specific Closed-Loop Forearm Model
,”
Multibody Syst. Dyn.
,
33
(
4
), pp.
413
438
.
35.
Matsui
,
K.
,
Shimada
,
K.
, and
Andrew
,
P. D.
,
2006
, “
Deviation of Skin Marker From Bone Target During Movement of the Scapula
,”
J. Orthop. Sci.
,
11
(
2
), pp.
180
184
.
36.
Duprey
,
S.
,
Cheze
,
L.
, and
Dumas
,
R.
,
2010
, “
Influence of Joint Constraints on Lower Limb Kinematics Estimation From Skin Markers Using Global Optimization
,”
J. Biomech.
,
43
(
14
), pp.
2858
2862
.
37.
Habachi
,
A. E.
,
Duprey
,
S.
,
Chèze
,
L.
, and
Dumas
,
R.
,
2013
, “
Global Sensitivity Analysis of the Kinematics Obtained With a Multi-Body Optimisation Using a Parallel Mechanism of the Shoulder
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
Suppl. 1
), pp.
61
62
.
38.
Hybois
,
S.
,
Lombart
,
A.
,
Puchaud
,
P.
,
Bascou
,
J.
,
Lavaste
,
F.
,
Pillet
,
H.
, and
Sauret
,
C.
,
2017
, “
Effects of Ellipsoid Parameters on Scapula Motion During Manual Wheelchair Propulsion Based on Multibody Kinematics Optimization. A Preliminary Study
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
Suppl. 1
), pp.
107
108
.
39.
Rankin
,
J. W.
,
Kwarciak
,
A. M.
,
Mark Richter
,
W.
, and
Neptune
,
R. R.
,
2010
, “
The Influence of Altering Push Force Effectiveness on Upper Extremity Demand During Wheelchair Propulsion
,”
J. Biomech.
,
43
(
14
), pp.
2771
2779
.
40.
Morrow
,
M. M.
,
Rankin
,
J. W.
,
Neptune
,
R. R.
, and
Kaufman
,
K. R.
,
2014
, “
A Comparison of Static and Dynamic Optimization Muscle Force Predictions During Wheelchair Propulsion
,”
J. Biomech.
,
47
(
14
), pp.
3459
3465
.
41.
Slowik
,
J. S.
,
McNitt-Gray
,
J. L.
,
Requejo
,
P. S.
,
Mulroy
,
S. J.
, and
Neptune
,
R. R.
,
2016
, “
Compensatory Strategies During Manual Wheelchair Propulsion in Response to Weakness in Individual Muscle Groups: A Simulation Study
,”
Clin. Biomech.
,
33
, pp.
34
41
.
42.
Reinbolt
,
J. A.
,
Schutte
,
J. F.
,
Fregly
,
B. J.
,
Koh
,
B. I.
,
Haftka
,
R. T.
,
George
,
A. D.
, and
Mitchell
,
K. H.
,
2005
, “
Determination of Patient-Specific Multi-Joint Kinematic Models Through Two-Level Optimization
,”
J. Biomech.
,
38
(
3
), pp.
621
626
.
43.
Andersen
,
M. S.
,
Damsgaard
,
M.
, and
Rasmussen
,
J.
,
2009
, “
Kinematic Analysis of Over-Determinate Biomechanical Systems
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
4
), pp.
371
384
.
You do not currently have access to this content.