While abnormal loading is widely believed to cause cervical spine disc diseases, in vivo cervical disc deformation during dynamic neck motion has not been well delineated. This study investigated the range of cervical disc deformation during an in vivo functional flexion–extension of the neck. Ten asymptomatic human subjects were tested using a combined dual fluoroscopic imaging system (DFIS) and magnetic resonance imaging (MRI)-based three-dimensional (3D) modeling technique. Overall disc deformation was determined using the changes of the space geometry between upper and lower endplates of each intervertebral segment (C3/4, C4/5, C5/6, and C6/7). Five points (anterior, center, posterior, left, and right) of each disc were analyzed to examine the disc deformation distributions. The data indicated that between the functional maximum flexion and extension of the neck, the anterior points of the discs experienced large changes of distraction/compression deformation and shear deformation. The higher level discs experienced higher ranges of disc deformation. No significant difference was found in deformation ranges at posterior points of all the discs. The data indicated that the range of disc deformation is disc level dependent and the anterior region experienced larger changes of deformation than the center and posterior regions, except for the C6/7 disc. The data obtained from this study could serve as baseline knowledge for the understanding of the cervical spine disc biomechanics and for investigation of the biomechanical etiology of disc diseases. These data could also provide insights for development of motion preservation surgeries for cervical spine.

References

1.
Malcolm
,
G. P.
,
2002
, “
Surgical Disorders of the Cervical Spine: Presentation and Management of Common Disorders
,”
J. Neurol. Neurosurg. Psychiatry
,
73
(
Suppl. 1
), pp.
i34
i41
.
2.
Baek
,
S. H.
,
Oh
,
J. W.
,
Shin
,
J. S.
,
Lee
,
J.
,
Lee
,
Y. J.
,
Kim
,
M. R.
,
Ahn
,
Y. J.
,
Choi
,
A.
,
Park
,
K. B.
,
Shin
,
B. C.
,
Lee
,
M. S.
, and
Ha
,
I. H.
,
2015
, “
Long Term Follow-Up of Cervical Intervertebral Disc Herniation Inpatients Treated With Integrated Complementary and Alternative Medicine: A Prospective Case Series Observational Study
,”
BMC Complementary Altern. Med.
,
16
(
1
), p.
52
.
3.
Bovim
,
G.
,
Schrader
,
H.
, and
Sand
,
T.
,
1994
, “
Neck Pain in the General Population
,”
Spine
,
19
(
12
), pp.
1307
1309
.
4.
Avery
,
R. M.
,
2012
, “
Massage Therapy for Cervical Degenerative Disc Disease: Alleviating a Pain in the Neck?
,”
Int. J. Ther. Massage Bodywork
,
5
(
3
), pp.
41
46
.
5.
Yang
,
K. H.
, and
King
,
A. I.
,
1984
, “
Mechanism of Facet Load Transmission as a Hypothesis for Low-Back Pain
,”
Spine
,
9
(
6
), pp.
557
565
.
6.
Gore
,
D. R.
,
Sepic
,
S. B.
, and
Gardner
,
G. M.
,
1986
, “
Roentgenographic Findings of the Cervical Spine in Asymptomatic People
,”
Spine
,
11
(
6
), pp.
521
524
.
7.
Suda
,
K.
,
Abumi
,
K.
,
Ito
,
M.
,
Shono
,
Y.
,
Kaneda
,
K.
, and
Fujiya
,
M.
,
2003
, “
Local Kyphosis Reduces Surgical Outcomes of Expansive Open-Door Laminoplasty for Cervical Spondylotic Myelopathy
,”
Spine
,
28
(
12
), pp.
1258
1262
.
8.
Barsa
,
P.
, and
Suchomel
,
P.
,
2007
, “
Factors Affecting Sagittal Malalignment Due to Cage Subsidence in Standalone Cage Assisted Anterior Cervical Fusion
,”
Eur. Spine J.
,
16
(
9
), pp.
1395
1400
.
9.
Kawaguchi
,
Y.
,
Kanamori
,
M.
,
Ishihara
,
H.
,
Ohmori
,
K.
,
Nakamura
,
H.
, and
Kimura
,
T.
,
2003
, “
Minimum 10-Year Followup After En Bloc Cervical Laminoplasty
,”
Clin. Orthop. Relat. Res.
,
411
, pp.
129
139
.
10.
Roberts
,
S.
,
Menage
,
J.
, and
Urban
,
J. P.
,
1989
, “
Biochemical and Structural Properties of the Cartilage End-Plate and Its Relation to the Intervertebral Disc
,”
Spine
,
14
(
2
), pp.
166
174
.
11.
Bibby
,
S. R.
,
Fairbank
,
J. C.
,
Urban
,
M. R.
, and
Urban
,
J. P.
,
2002
, “
Cell Viability in Scoliotic Discs in Relation to Disc Deformity and Nutrient Levels
,”
Spine
,
27
(
20
), pp.
2220
2228
; discussion 2227–2228.
12.
Chan
,
W. C.
,
Sze
,
K. L.
,
Samartzis
,
D.
,
Leung
,
V. Y.
, and
Chan
,
D.
,
2011
, “
Structure and Biology of the Intervertebral Disk in Health and Disease
,”
Orthop. Clin. North Am.
,
42
(
4
), pp.
447
464
, vii.
13.
Wu
,
D. J.
,
Chen
,
K.
,
Wei
,
X. Z.
,
Ni
,
H. J.
,
Yu
,
S. Z.
,
Zhu
,
X. D.
, and
Li
,
M.
,
2014
, “
Analysis of Intervertebral Disc-Related Genes
,”
Genet. Mol. Res.
,
13
(
1
), pp.
2032
2038
.
14.
Lin
,
R. M.
,
Tsai
,
K. H.
,
Chu
,
L. P.
, and
Chang
,
P. Q.
,
2001
, “
Characteristics of Sagittal Vertebral Alignment in Flexion Determined by Dynamic Radiographs of the Cervical Spine
,”
Spine
,
26
(
3
), pp.
256
261
.
15.
Miyazaki
,
M.
,
Hymanson
,
H. J.
,
Morishita
,
Y.
,
He
,
W.
,
Zhang
,
H.
,
Wu
,
G.
,
Kong
,
M. H.
,
Tsumura
,
H.
, and
Wang
,
J. C.
,
2008
, “
Kinematic Analysis of the Relationship Between Sagittal Alignment and Disc Degeneration in the Cervical Spine
,”
Spine
,
33
(
23
), pp.
E870
E876
.
16.
Anderst
,
W.
,
2016
, “
Narrative Review of the in vivo Mechanics of the Cervical Spine After Anterior Arthrodesis as Revealed by Dynamic Biplane Radiography
,”
J. Orthop. Res.
,
34
(
1
), pp.
22
30
.
17.
Kolstad
,
F.
,
Myhr
,
G.
,
Kvistad
,
K. A.
,
Nygaard
,
O. P.
, and
Leivseth
,
G.
,
2005
, “
Degeneration and Height of Cervical Discs Classified From MRI Compared With Precise Height Measurements From Radiographs
,”
Eur. J. Radiol.
,
55
(
3
), pp.
415
420
.
18.
Gilad
,
I.
, and
Nissan
,
M.
,
1986
, “
A Study of Vertebra and Disc Geometric Relations of the Human Cervical and Lumbar Spine
,”
Spine
,
11
(
2
), pp.
154
157
.
19.
Kumaresan
,
S.
,
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Macias
,
M.
, and
Cusick
,
J. F.
,
2000
, “
Morphology of Young and Old Cervical Spine Intervertebral Disc Tissues
,”
Biomed. Sci. Instrum.
,
36
, pp.
141
146
.
20.
Frobin
,
W.
,
Leivseth
,
G.
,
Biggemann
,
M.
, and
Brinckmann
,
P.
,
2002
, “
Vertebral Height, Disc Height, Posteroanterior Displacement and Dens-Atlas Gap in the Cervical Spine: Precision Measurement Protocol and Normal Data
,”
Clin. Biomech.
,
17
(
6
), pp.
423
431
.
21.
del Palomar
,
A. P.
,
Calvo
,
B.
, and
Doblare
,
M.
,
2008
, “
An Accurate Finite Element Model of the Cervical Spine Under Quasi-Static Loading
,”
J. Biomech.
,
41
(
3
), pp.
523
531
.
22.
Kallemeyn
,
N.
,
Gandhi
,
A.
,
Kode
,
S.
,
Shivanna
,
K.
,
Smucker
,
J.
, and
Grosland
,
N.
,
2010
, “
Validation of a C2-C7 Cervical Spine Finite Element Model Using Specimen-Specific Flexibility Data
,”
Med. Eng. Phys.
,
32
(
5
), pp.
482
489
.
23.
Womack
,
W.
,
Leahy
,
P. D.
,
Patel
,
V. V.
, and
Puttlitz
,
C. M.
,
2011
, “
Finite Element Modeling of Kinematic and Load Transmission Alterations Due to Cervical Intervertebral Disc Replacement
,”
Spine
,
36
(
17
), pp.
E1126
E1133
.
24.
Hussain
,
M.
,
Natarajan
,
R. N.
,
An
,
H. S.
, and
Andersson
,
G. B.
,
2012
, “
Progressive Disc Degeneration at C5-C6 Segment Affects the Mechanics Between Disc Heights and Posterior Facets Above and Below the Degenerated Segment: A Flexion-Extension Investigation Using a Poroelastic C3-T1 Finite Element Model
,”
Med. Eng. Phys.
,
34
(
5
), pp.
552
558
.
25.
Aour
,
B.
, and
Damba
,
N.
,
2014
, “
Finite Element Investigation of the Intervertebral Disc Behaviour
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
Suppl. 1
), pp.
58
59
.
26.
Ha
,
S. K.
,
2006
, “
Finite Element Modeling of Multi-Level Cervical Spinal Segments (C3-C6) and Biomechanical Analysis of an Elastomer-Type Prosthetic Disc
,”
Med. Eng. Phys.
,
28
(
6
), pp.
534
541
.
27.
Dmitriev
,
A. E.
,
Cunningham
,
B. W.
,
Hu
,
N.
,
Sell
,
G.
,
Vigna
,
F.
, and
McAfee
,
P. C.
,
2005
, “
Adjacent Level Intradiscal Pressure and Segmental Kinematics Following a Cervical Total Disc Arthroplasty: An In Vitro Human Cadaveric Model
,”
Spine
,
30
(
10
), pp.
1165
1172
.
28.
Schwab
,
J. S.
,
Diangelo
,
D. J.
, and
Foley
,
K. T.
,
2006
, “
Motion Compensation Associated With Single-Level Cervical Fusion: Where Does the Lost Motion Go?
,”
Spine
,
31
(
21
), pp.
2439
2448
.
29.
Brodke
,
D. S.
,
Klimo
,
P.
, Jr.
,
Bachus
,
K. N.
,
Braun
,
J. T.
, and
Dailey
,
A. T.
,
2006
, “
Anterior Cervical Fixation: Analysis of Load-Sharing and Stability With Use of Static and Dynamic Plates
,”
J. Bone Jt. Surg. Am. Vol.
,
88
(
7
), pp.
1566
1573
.
30.
Davies
,
M. A.
,
Bryant
,
S. C.
,
Larsen
,
S. P.
,
Murrey
,
D. B.
,
Nussman
,
D. S.
,
Laxer
,
E. B.
, and
Darden
,
B. V.
,
2006
, “
Comparison of Cervical Disk Implants and Cervical Disk Fusion Treatments in Human Cadaveric Models
,”
ASME J. Biomech. Eng.
,
128
(
4
), pp.
481
486
.
31.
Anderst
,
W. J.
,
Baillargeon
,
E.
,
Donaldson
,
W. F.
, III
,
Lee
,
J. Y.
, and
Kang
,
J. D.
,
2011
, “
Validation of a Noninvasive Technique to Precisely Measure In Vivo Three-Dimensional Cervical Spine Movement
,”
Spine
,
36
(
6
), pp.
E393
E400
.
32.
Anderst
,
W.
,
Baillargeon
,
E.
,
Donaldson
,
W.
,
Lee
,
J.
, and
Kang
,
J.
,
2013
, “
Motion Path of the Instant Center of Rotation in the Cervical Spine During In Vivo Dynamic Flexion-Extension: Implications for Artificial Disc Design and Evaluation of Motion Quality After Arthrodesis
,”
Spine
,
38
(
10
), pp.
E594
E601
.
33.
Anderst
,
W. J.
,
Donaldson
,
W. F.
, III
,
Lee
,
J. Y.
, and
Kang
,
J. D.
,
2014
, “
Continuous Cervical Spine Kinematics During In Vivo Dynamic Flexion-Extension
,”
Spine J.
,
14
(
7
), pp.
1221
1227
.
34.
Anderst
,
W. J.
,
2015
, “
Bootstrap Prediction Bands for Cervical Spine Intervertebral Kinematics During In Vivo Three-Dimensional Head Movements
,”
J. Biomech.
,
48
(
7
), pp.
1270
1276
.
35.
Anderst
,
W. J.
,
Donaldson
,
W. F.
, 3rd
,
Lee
,
J. Y.
, and
Kang
,
J. D.
,
2015
, “
Three-Dimensional Intervertebral Kinematics in the Healthy Young Adult Cervical Spine During Dynamic Functional Loading
,”
J. Biomech.
,
48
(
7
), pp.
1286
1293
.
36.
Anderst
,
W.
,
Donaldson
,
W.
,
Lee
,
J.
, and
Kang
,
J.
,
2013
, “
Cervical Disc Deformation During Flexion-Extension in Asymptomatic Controls and Single-Level Arthrodesis Patients
,”
J. Orthop. Res.
,
31
(
12
), pp.
1881
1889
.
37.
Anderst
,
W.
,
Donaldson
,
W.
,
Lee
,
J.
, and
Kang
,
J.
,
2015
, “
Cervical Spine Disc Deformation During In Vivo Three-Dimensional Head Movements
,”
Ann. Biomed. Eng.
,
44
(
5
), pp.
1598
1612
.
38.
Wang
,
S.
,
Xia
,
Q.
,
Passias
,
P.
,
Wood
,
K.
, and
Li
,
G.
,
2009
, “
Measurement of Geometric Deformation of Lumbar Intervertebral Discs Under In-Vivo Weightbearing Condition
,”
J. Biomech.
,
42
(
6
), pp.
705
711
.
39.
Wang
,
S.
,
Xia
,
Q.
,
Passias
,
P.
,
Li
,
W.
,
Wood
,
K.
, and
Li
,
G.
,
2011
, “
How Does Lumbar Degenerative Disc Disease Affect the Disc Deformation at the Cephalic Levels In Vivo?
,”
Spine
,
36
(
9
), pp.
E574
E581
.
40.
Li
,
G.
,
DeFrate
,
L. E.
,
Park
,
S. E.
,
Gill
,
T. J.
, and
Rubash
,
H. E.
,
2005
, “
In Vivo Articular Cartilage Contact Kinematics of the Knee: An Investigation Using Dual-Orthogonal Fluoroscopy and Magnetic Resonance Image-Based Computer Models
,”
Am. J. Sports Med.
,
33
(
1
), pp.
102
107
.
41.
Fedorov
,
A.
,
Beichel
,
R.
,
Kalpathy-Cramer
,
J.
,
Finet
,
J.
,
Fillion-Robin
,
J. C.
,
Pujol
,
S.
,
Bauer
,
C.
,
Jennings
,
D.
,
Fennessy
,
F.
,
Sonka
,
M.
,
Buatti
,
J.
,
Aylward
,
S.
,
Miller
,
J. V.
,
Pieper
,
S.
, and
Kikinis
,
R.
,
2012
, “
3D Slicer as an Image Computing Platform for the Quantitative Imaging Network
,”
Magn. Reson. Imaging
,
30
(
9
), pp.
1323
1341
.
42.
Stemper
,
B. D.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
2003
, “
Gender Dependent Cervical Spine Segmental Kinematics During Whiplash
,”
J. Biomech.
,
36
(
9
), pp.
1281
1289
.
43.
Deng
,
B.
,
Begeman
,
P. C.
,
Yang
,
K. H.
,
Tashman
,
S.
, and
King
,
A. I.
,
2000
, “
Kinematics of Human Cadaver Cervical Spine During Low Speed Rear-End Impacts
,”
Stapp Car Crash J.
,
44
, pp.
171
188
.
44.
Ishii
,
T.
,
Mukai
,
Y.
,
Hosono
,
N.
,
Sakaura
,
H.
,
Fujii
,
R.
,
Nakajima
,
Y.
,
Tamura
,
S.
,
Iwasaki
,
M.
,
Yoshikawa
,
H.
, and
Sugamoto
,
K.
,
2006
, “
Kinematics of the Cervical Spine in Lateral Bending: In Vivo Three-Dimensional Analysis
,”
Spine
,
31
(
2
), pp.
155
160
.
45.
Goel
,
V. K.
, and
Clausen
,
J. D.
,
1998
, “
Prediction of Load Sharing Among Spinal Components of a C5C6 Motion Segment Using the Finite Element Approach
,”
Spine
,
23
(
6
), pp.
684
691
.
46.
Hunter
,
L. Y.
,
Braunstein
,
E. M.
, and
Bailey
,
R. W.
,
1980
, “
Radiographic Changes Following Anterior Cervical Fusion
,”
Spine
,
5
(
5
), pp.
399
401
.
47.
Morishita
,
Y.
,
Hida
,
S.
,
Miyazaki
,
M.
,
Hong
,
S. W.
,
Zou
,
J.
,
Wei
,
F.
,
Naito
,
M.
, and
Wang
,
J. C.
,
2008
, “
The Effects of the Degenerative Changes in the Functional Spinal Unit on the Kinematics of the Cervical Spine
,”
Spine
,
33
(
6
), pp.
E178
E182
.
48.
Mummaneni
,
P. V.
,
Burkus
,
J. K.
,
Haid
,
R. W.
,
Traynelis
,
V. C.
, and
Zdeblick
,
T. A.
,
2007
, “
Clinical and Radiographic Analysis of Cervical Disc Arthroplasty Compared With Allograft Fusion: A Randomized Controlled Clinical Trial
,”
J. Neurosurg. Spine
,
6
(
3
), pp.
198
209
.
49.
Ren
,
C.
,
Song
,
Y.
,
Xue
,
Y.
, and
Yang
,
X.
,
2014
, “
Mid- to Long-Term Outcomes After Cervical Disc Arthroplasty Compared With Anterior Discectomy and Fusion: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
,”
Eur. Spine J.
,
23
(
5
), pp.
1115
1123
.
50.
Verma
,
K.
,
Gandhi
,
S. D.
,
Maltenfort
,
M.
,
Albert
,
T. J.
,
Hilibrand
,
A. S.
,
Vaccaro
,
A. R.
, and
Radcliff
,
K. E.
,
2013
, “
Rate of Adjacent Segment Disease in Cervical Disc Arthroplasty Versus Single-Level Fusion: Meta-Analysis of Prospective Studies
,”
Spine
,
38
(
26
), pp.
2253
2257
.
51.
Park
,
D. K.
,
Lin
,
E. L.
, and
Phillips
,
F. M.
,
2011
, “
Index and Adjacent Level Kinematics After Cervical Disc Replacement and Anterior Fusion: In Vivo Quantitative Radiographic Analysis
,”
Spine
,
36
(
9
), pp.
721
730
.
52.
Pickett
,
G. E.
,
Rouleau
,
J. P.
, and
Duggal
,
N.
,
2005
, “
Kinematic Analysis of the Cervical Spine Following Implantation of an Artificial Cervical Disc
,”
Spine
,
30
(
17
), pp.
1949
1954
.
53.
Lee
,
S. H.
,
Im
,
Y. J.
,
Kim
,
K. T.
,
Kim
,
Y. H.
,
Park
,
W. M.
, and
Kim
,
K.
,
2011
, “
Comparison of Cervical Spine Biomechanics After Fixed- and Mobile-Core Artificial Disc Replacement: A Finite Element Analysis
,”
Spine
,
36
(
9
), pp.
700
708
.
54.
Staudt
,
M. D.
,
Das
,
K.
, and
Duggal
,
N.
,
2016
, “
Does Design Matter? Cervical Disc Replacements Under Review
,”
Neurosurg. Rev.
, (epub).
You do not currently have access to this content.