Optogenetic approaches allow cellular membrane potentials to be perturbed by light. When applied to muscle cells, mechanical events can be controlled through a process that could be termed “optomechanics.” Besides functioning as an optical on/off switch, we hypothesized that optomechanical control could include the ability to manipulate the strength and duration of contraction events. To explore this possibility, we constructed an electromechanical model of the human ventricular cardiomyocyte while adding a representation of channelrhodopsin-2 (ChR2), a light-activated channel commonly used in optogenetics. Two hybrid stimulus protocols were developed that combined light-based stimuli with traditional electrical current (all-or-none) excitation. The first protocol involved delivery of a subthreshold optical stimulus followed 50–90 ms later by an electrical stimulus. The result was a graded inhibition of peak cellular twitch force in concert with a prolongation of the intracellular Ca2+ transient. The second protocol was comprised of an electrical stimulus followed by a long light pulse (250–350 ms) that acted to prolong the cardiac action potential (AP). This created a pulse duration-dependent prolongation of the intracellular Ca2+ transient that in turn altered the rate of muscle relaxation without changing peak twitch force. These results illustrate the feasibility of acute, optomechanical manipulation of cardiomyocyte contraction and suggest that this approach could be used to probe the dynamic behavior of the cardiac sarcomere without altering its intrinsic properties. Other experimentally meaningful stimulus protocols could be designed by making use of the optomechanical cardiomyocyte model presented here.

References

1.
Deisseroth
,
K.
,
2011
, “
Optogenetics
,”
Nat. Methods
,
8
(
1
), pp.
26
29
.
2.
Pastrana
,
E.
,
2011
, “
Optogenetics: Controlling Cell Function With Light
,”
Nat. Methods
,
8
(
1
), pp.
24
25
.
3.
Mattis
,
J.
,
Tye
,
K. M.
,
Ferenczi
,
E. A.
,
Ramakrishnan
,
C.
,
Shea
,
D. J. O.
,
Prakash
,
R.
,
Gunaydin
,
L. A.
,
Hyun
,
M.
,
Fenno
,
L. E.
,
Gradinaru
,
V.
,
Yizhar
,
O.
, and
Deisseroth
,
K.
,
2012
, “
Principles for Applying Optogenetic Tools Derived From Direct Comparative Analysis of Microbial Opsins
,”
Nat. Methods
,
9
(2), pp.
159
172
.
4.
Tonnesen
,
J.
,
Sorensen
,
A. T.
,
Deisseroth
,
K.
,
Lundberg
,
C.
, and
Kokaia
,
M.
,
2009
, “
Optogenetic Control of Epileptiform Activity
,”
Proc. Natl. Acad. Sci.
,
106
(
29
), pp.
12162
12167
.
5.
Abilez
,
J. O.
,
Wong
,
J.
,
Prakash
,
R.
,
Deisseroth
,
K.
,
Zarins
,
K. C.
, and
Kuhl
,
E.
,
2011
, “
Multiscale Computational Models for Optogenetic Control of Cardiac Function
,”
Biophys. J.
,
101
(
6
), pp.
1326
1334
.
6.
Knollmann
,
B.
,
2010
, “
Pacing Lightly: Optogenetics Gets to the Heart
,”
Nat. Methods
,
7
(
11
), pp.
889
891
.
7.
Ambrosi
,
M. C.
,
Klimas
,
A.
,
Yu
,
J.
, and
Entcheva
,
E.
,
2014
, “
Cardiac Applications of Optogenetics
,”
Prog. Biophys. Mol. Biol.
,
115
(2–3), pp.
294
304
.
8.
Burton
,
R.
,
Klimas
,
A.
,
Ambrosi
,
C.
,
Tomek
,
J.
,
Corbett
,
A.
,
Entcheva
,
E.
, and
Bub
,
G.
,
2015
, “
Optical Control of Excitation Waves in Cardiac Tissue
,”
Nat. Photonics
,
9
, pp.
813
816
.
9.
Raman
,
R.
,
Cvetkovic
,
C.
,
Uzel
,
S. G. M.
,
Platt
,
R. J.
,
Sengupta
,
P.
,
Kamm
,
R. D.
, and
Bashir
,
R.
,
2016
, “
Optogenetic Skeletal Muscle-Powered Adaptive Biological Machines
,”
Proc. Natl. Acad. Sci. USA
,
113
(
13
), pp.
3497
3502
.
10.
Cordeiro
,
J.
,
Greene
,
L.
,
Heilmann
,
C.
,
Antzelevitch
,
D.
, and
Antzelevitch
,
C.
,
2004
, “
Transmural Heterogeneity of Calcium Activity and Mechanical Function in the Canine Left Ventricle
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
286
(
4
), pp.
H1471
H1479
.
11.
Bers
,
D. M.
,
2002
, “
Cardiac Excitation-Contraction Coupling
,”
Nature
,
415
(
6868
), pp.
198
205
.
12.
Janssen
,
P. M.
, and
de Tombe
,
P. P.
,
1997
, “
Uncontrolled Sarcomere Shortening Increases Intracellular Ca2+ Transient in Rat Cardiac Trabeculae
,”
Am. J. Physiol.
,
272
(
4 Pt 2
), pp.
H1892
H1897
.
13.
Campbell
,
S. G.
,
Haynes
,
P.
,
Snapp
,
W. K.
,
Nava
,
K. E.
, and
Campbell
,
K. S.
,
2013
, “
Altered Ventricular Torsion and Transmural Patterns of Myocyte Relaxation Precede Heart Failure in Aging F344 Rats
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
305
(
5
), pp.
H676
H686
.
14.
Sheikh
,
F.
,
Ouyang
,
K.
,
Campbell
,
S. G.
,
Lyon
,
R. C.
,
Chuang
,
J.
,
Fitzsimons
,
D.
,
Tangney
,
J.
,
Hidalgo
,
C. G.
,
Chung
,
C. S.
,
Cheng
,
H.
,
Dalton
,
N. D.
,
Gu
,
Y.
,
Kasahara
,
H.
,
Ghassemian
,
M.
,
Omens
,
J. H.
,
Peterson
,
K. L.
,
Granzier
,
H. L.
,
Moss
,
R. L.
,
McCulloch
,
A. D.
, and
Chen
,
J.
,
2012
, “
Mouse and Computational Models Link Mlc2v Dephosphorylation to Altered Myosin Kinetics in Early Cardiac Disease
,”
J. Clin. Invest.
,
122
(
4
), pp.
1209
1221
.
15.
Niederer
,
S. A.
,
Hunter
,
P. J.
, and
Smith
,
N. P.
,
2006
, “
A Quantitative Analysis of Cardiac Myocyte Relaxation: A Simulation Study
,”
Biophys. J.
,
90
(
5
), pp.
1697
1722
.
16.
Kuo
,
I. Y.
,
Kwaczala
,
A. T.
,
Nguyen
,
L.
,
Russell
,
K. S.
,
Campbell
,
S. G.
, and
Ehrlich
,
B. E.
,
2014
, “
Decreased Polycystin 2 Expression Alters Calcium-Contraction Coupling and Changes β-Adrenergic Signaling Pathways
,”
Proc. Natl. Acad. Sci. USA
,
111
(
46
), pp.
16604
16609
.
17.
Aboelkassem
,
Y.
,
Bonilla
,
J. A.
,
McCabe
,
K. J.
, and
Campbell
,
S. G.
,
2015
, “
Contributions of Ca2+-Independent Thin Filament Activation to Cardiac Muscle Function
,”
Biophys. J.
,
109
(
10
), pp.
2101
2112
.
18.
Xu
,
Y.
,
Monasky
,
M. M.
,
Hiranandani
,
N.
,
Haizlip
,
K. M.
,
Billman
,
G. E.
, and
Janssen
,
P. M. L.
,
2011
, “
Effect of Twitch Interval Duration on the Contractile Function of Subsequent Twitches in Isolated Rat, Rabbit, and Dog Myocardium Under Physiological Conditions
,”
J. Appl. Physiol.
,
111
(
4
), pp.
1159
1167
.
19.
Varian
,
K. D.
, and
Janssen
,
P. M. L.
,
2007
, “
Frequency-Dependent Acceleration of Relaxation Involves Decreased Myofilament Calcium Sensitivity
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
292
(
5
), pp.
H2212
H2219
.
20.
Kranias
,
E. G.
, and
Solaro
,
R. J.
,
1982
, “
Phosphorylation of Troponin I and Phospholamban During Catecholamine Stimulation of Rabbit Heart
,”
Nature
,
298
(
5870
), pp.
182
184
.
21.
Williams
,
J. C.
,
Xu
,
J.
,
Lu
,
Z.
,
Klimas
,
A.
,
Chen
,
X.
,
Ambrosi
,
M. C.
,
Cohen
,
S. I.
, and
Entcheva
,
E.
,
2013
, “
Computational Optogenetics: Empirically-Derived Voltage- and Light-Sensitive Channelrhodopsin-2 Model
,”
PLoS Comput. Biol.
,
9
(
9
), p.
e1003220
.
22.
Entcheva
,
E.
, and
Williams
,
J. W.
,
2014
, “
Channelrhodopsin2 Current During the Action Potential: ‘Optical AP Clamp’ and Approximation
,”
Sci. Rep.
,
4
, p.
5838
.
23.
Boyle
,
P. M.
,
Williams
,
J. C.
,
Ambrosi
,
C. M.
,
Entcheva
,
E.
, and
Trayanova
,
N. A.
,
2013
, “
A Comprehensive Multiscale Framework for Simulating Optogenetics in the Heart
,”
Nat. Commun.
,
4
, p.
2370
.
24.
Iyer
,
V.
,
Mazhari
,
R.
, and
Winslow
,
L. R.
,
2004
, “
A Computational Model of the Human Left-Ventricular Epicardial Myocyte
,”
Biophys. J.
,
87
(
3
), pp.
1507
1525
.
25.
Rice
,
J. J.
,
Wang
,
F.
,
Bers
,
M. D.
, and
de Tombe
,
P. P.
,
2008
, “
Approximate Model of Cooperative Activation and Crossbridge Cycling in Cardiac Muscle Using Ordinary Differential Equations
,”
Biophys. J.
,
95
(
5
), pp.
2368
2390
.
26.
Nikolic
,
K.
,
Grossman
,
N.
,
Grubb
,
S. M.
,
Burrone
,
J.
,
Toumazou
,
C.
, and
Degenaar
,
P.
,
2009
, “
Photocycles of Channelrhodopsin-2
,”
Photochem. Photobiol.
,
85
(
1
), pp.
400
411
.
27.
Richard
,
P.
,
Charron
,
P.
,
Carrier
,
L.
,
Ledeuil
,
C.
,
Cheav
,
T.
,
Pichereau
,
C.
,
Benaiche
,
A.
,
Isnard
,
R.
,
Dubourg
,
O.
,
Burban
,
M.
,
Gueffet
,
J.-P.
,
Millaire
,
A.
,
Desnos
,
M.
,
Schwartz
,
K.
,
Hainque
,
B.
, and
Komajda
,
M.
, and
EUROGENE Heart Failure Project
,
2003
, “
Hypertrophic Cardiomyopathy: Distribution of Disease Genes, Spectrum of Mutations, and Implications for a Molecular Diagnosis Strategy
,”
Circulation
,
107
(
17
), pp.
2227
2232
.
28.
Seidman
,
C. E.
, and
Seidman
,
J. G.
,
2011
, “
Identifying Sarcomere Gene Mutations in Hypertrophic Cardiomyopathy: A Personal History
,”
Circ. Res.
,
108
(
6
), pp.
743
750
.
29.
Spudich
,
J. A.
,
2014
, “
Hypertrophic and Dilated Cardiomyopathy: Four Decades of Basic Research on Muscle Lead to Potential Therapeutic Approaches to These Devastating Genetic Diseases
,”
Biophys. J.
,
106
(
6
), pp.
1236
1249
.
30.
Wen
,
Y.
,
Xu
,
Y.
,
Wang
,
Y.
,
Pinto
,
J. R.
,
Potter
,
J. D.
, and
Kerrick
,
W. G. L.
,
2009
, “
Functional Effects of a Restrictive-Cardiomyopathy-Linked Cardiac Troponin I Mutation (R145W) in Transgenic Mice
,”
J. Mol. Biol.
,
392
(
5
), pp.
1158
1167
.
31.
McClellan
,
G.
,
Kulikovskaya
,
I.
, and
Winegrad
,
S.
,
2001
, “
Changes in Cardiac Contractility Related to Calcium-Mediated Changes in Phosphorylation of Myosin-Binding Protein C
,”
Biophys. J.
,
81
(
2
), pp.
1083
1092
.
32.
Tong
,
C. W.
,
Gaffin
,
R. D.
,
Zawieja
,
D. C.
, and
Muthuchamy
,
M.
,
2004
, “
Roles of Phosphorylation of Myosin Binding Protein-C and Troponin I in Mouse Cardiac Muscle Twitch Dynamics
,”
J. Physiol. (London)
,
558
(
Pt 3
), pp.
927
941
.
You do not currently have access to this content.