In a monocrotaline (MCT) induced-pulmonary arterial hypertension (PAH) rat animal model, the dynamic stress–strain relation was investigated in the circumferential and axial directions using a linear elastic response model within the quasi-linear viscoelasticity theory framework. Right and left pulmonary arterial segments (RPA and LPA) were mechanically tested in a tubular biaxial device at the early stage (1 week post-MCT treatment) and at the advanced stage of the disease (4 weeks post-MCT treatment). The vessels were tested circumferentially at the in vivo axial length with matching in vivo measured pressure ranges. Subsequently, the vessels were tested axially at the mean pulmonary arterial pressure by stretching them from in vivo plus 5% of their length. Parameter estimation showed that the LPA and RPA remodel at different rates: axially, both vessels decreased in Young's modulus at the early stage of the disease, and increased at the advanced disease stage. Circumferentially, the Young's modulus increased in advanced PAH, but it was only significant in the RPA. The damping properties also changed in PAH; in the LPA relaxation times decreased continuously as the disease progressed, while in the RPA they initially increased and then decreased. Our modeling efforts were corroborated by the restructuring organization of the fibers imaged under multiphoton microscopy, where the collagen fibers become strongly aligned to the 45 deg angle in the RPA from an uncrimped and randomly organized state. Additionally, collagen content increased almost 10% in the RPA from the placebo to advanced PAH.

References

1.
Stenmark
,
K. R.
,
Fagan
,
K. A.
, and
Frid
,
M. G.
,
2006
, “
Hypoxia-Induced Pulmonary Vascular Remodeling: Cellular and Molecular Mechanisms
,”
Circ. Res.
,
99
(
7
), pp.
675
691
.
2.
Stenmark
,
K. R.
,
Meyrick
,
B.
,
Galie
,
N.
,
Mooi
,
W. J.
, and
Mcmurtry
,
I. F.
,
2009
, “
Animal Models of Pulmonary Arterial Hypertension: The Hope for Etiological Discovery and Pharmacological Cure
,”
Am. J. Physiol. Lung. Cell Mol. Physiol.
,
297
(
6
), pp.
1013
1032
.
3.
Armentano
,
R. L.
,
Barra
,
J. G.
,
Santana
,
D. B.
,
Pessana
,
F. M.
,
Graf
,
S.
,
Craiem
,
D.
,
Brandani
,
L. M.
,
Baglivo
,
H. P.
, and
Sanchez
,
R. A.
,
2006
, “
Smart Damping Modulation of Carotid Wall Energetics in Human Hypertension: Effects of Angiotensin-Converting Enzyme Inhibition
,”
Hypertension
,
47
(
3
), pp.
384
390
.
4.
Drexler
,
E. S.
,
Bischoff
,
J. E.
,
Slifka
,
A. J.
,
McCowan
,
C. N.
,
Quinn
,
T. P.
,
Shandas
,
R.
,
Ivy
,
D. D.
, and
Stenmark
,
K. R.
,
2008
, “
Stiffening of the Extrapulmonary Arteries From Rats in Chronic Hypoxic Pulmonary Hypertension
,”
J. Res. Natl. Inst. Stand. Technol.
,
113
(
4
), p.
239
.
5.
Tian
,
L.
,
Lammers
,
S. R.
,
Kao
,
P. H.
,
Albietz
,
J. A.
,
Stenmark
,
K. R.
,
Qi
,
H. J.
,
Shandas
,
R.
, and
Hunter
,
K. S.
,
2012
, “
Impact of Residual Stretch and Remodeling on Collagen Engagement in Healthy and Pulmonary Hypertensive Calf Pulmonary Arteries at Physiological Pressures.
,”
Ann. Biomed. Eng.
,
40
(
7
), pp.
1419
1433
.
6.
Kobs
,
R. W.
,
Muvarak
,
N. E.
,
Eickhoff
,
J. C.
, and
Chesler
,
N. C.
,
2005
, “
Linked Mechanical and Biological Aspects of Remodeling in Mouse Pulmonary Arteries With Hypoxia-Induced Hypertension
,”
Am. J. Physiol. Hear. Circ. Physiol.
,
288
(
3
), pp.
H1209
H1217
.
7.
Ooi
,
C. Y.
,
Wang
,
Z.
,
Tabima
,
D. M.
,
Eickhoff
,
J. C.
, and
Chesler
,
N. C.
,
2010
, “
The Role of Collagen in Extralobar Pulmonary Artery Stiffening in Response to Hypoxia-Induced Pulmonary Hypertension
,”
Am. J. Physiol. Heart Circ. Physiol.
,
299
(
6
), pp.
H1823
H1831
.
8.
Tian
,
L.
,
Wang
,
Z.
,
Liu
,
Y.
,
Eickhoff
,
J. C.
,
Eliceiri
,
K. W.
, and
Chesler
,
N. C.
,
2016
, “
Validation of an Arterial Constitutive Model Accounting for Collagen Content and Crosslinking
,”
Acta Biomater.
,
31
, pp.
276
287
.
9.
Wang
,
Z.
, and
Chesler
,
N. C.
,
2012
, “
Role of Collagen Content and Cross-Linking in Large Pulmonary Arterial Stiffening After Chronic Hypoxia
,”
Biomech. Model. Mechanobiol.
,
11
(
1–2
), pp.
279
289
.
10.
Tozzi
,
C. A.
,
Christiansen
,
D. L.
,
Poiani
,
G. J.
, and
Riley
,
D. J.
,
1994
, “
Excess Collagen in Hypertensive Pulmonary Arteries Decreases Vascular Distensibility
,”
Am. J. Respir. Crit. Care Med.
,
149
(
5
), pp.
1317
1326
.
11.
Huang
,
W.
,
Delgado-West
,
D.
,
Wu
,
J. T.
, and
Fung
,
Y. C.
,
2001
, “
Tissue Remodeling of Rat Pulmonary Artery in Hypoxic Breathing—II: Course of Change of Mechanical Properties
,”
Ann. Biomed. Eng.
,
29
(
7
), pp.
552
562
.
12.
Tortora
,
G. J.
, and
Derrickson
,
B.
,
2009
,
Principles of Anatomy and Physiology
, 12th ed.,
Wiley
, Hoboken, NJ.
13.
Ellis
,
R.
,
Leigh
,
R.
,
Southam
,
D.
,
O'Byrne
,
P. M.
, and
Inman
,
M. D.
,
2003
, “
Morphometric Analysis of Mouse Airways After Chronic Allergen Challenge
,”
Lab. Investig.
,
83
(
9
), pp.
1285
1291
.
14.
Humphrey
,
J. D.
,
Eberth
,
J. F.
,
Dye
,
W. W.
, and
Gleason
,
R. L.
,
2009
, “
Fundamental Role of Axial Stress in Compensatory Adaptations by Arteries
,”
J. Biomech.
,
42
(
1
), pp.
1
8
.
15.
George
,
M. P.
,
Champion
,
H. C.
, and
Pilewski
,
J. M.
,
2011
, “
Lung Transplantation for Pulmonary Hypertension
,”
Pulm. Circ.
,
1
(
2
), pp.
182
191
.
16.
Zeineh
,
N. S.
,
Bachman
,
T. N.
,
El-Haddad
,
H.
, and
Champion
,
H. C.
,
2014
, “
Effects of Acute Intravenous Iloprost on Right Ventricular Hemodynamics in Rats With Chronic Pulmonary Hypertension
,”
Pulm. Circ.
,
4
(
4
), pp.
612
618
.
17.
Schindelin
,
J.
,
Arganda-Carreras
,
I.
,
Frise
,
E.
,
Kaynig
,
V.
,
Longair
,
M.
,
Pietzsch
,
T.
,
Preibisch
,
S.
,
Rueden
,
C.
,
Saalfeld
,
S.
,
Schmid
,
B.
,
Tinevez
,
J.-Y.
,
White
,
D. J.
,
Hartenstein
,
V.
,
Eliceiri
,
K.
,
Tomancak
,
P.
, and
Cardona
,
A.
,
2012
, “
Fiji: An Open-Source Platform for Biological-Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
676
682
.
18.
Kao
,
P. H.
,
Lammers
,
S. R.
,
Tian
,
L.
,
Hunter
,
K.
,
Stenmark
,
K. R.
,
Shandas
,
R.
, and
Qi
,
H. J.
,
2011
, “
A Microstructurally Driven Model for Pulmonary Artery Tissue
,”
ASME J. Biomech. Eng.
,
133
(
5
), p.
051002
.
19.
Lammers
,
S. R.
,
Kao
,
P. H.
,
Qi
,
H. J.
,
Hunter
,
K.
,
Lanning
,
C.
,
Albietz
,
J.
,
Hofmeister
,
S.
,
Mecham
,
R.
,
Stenmark
,
K. R.
, and
Shandas
,
R.
,
2008
, “
Changes in the Structure-Function Relationship of Elastin and Its Impact on the Proximal Pulmonary Arterial Mechanics of Hypertensive Calves
,”
Am. J. Physiol. Heart Circ. Physiol.
,
295
(
4
), pp.
H1451
H1459
.
20.
Fung
,
Y. C.
,
1997
,
Biomechanics: Circulation
,
Springer-Verlag
,
New York
.
21.
Valdez-Jasso
,
D.
,
Bia
,
D.
,
Zócalo
,
Y.
,
Armentano
,
R. L.
,
Haider
,
M. A.
, and
Olufsen
,
M. S.
,
2011
, “
Linear and Nonlinear Viscoelastic Modeling of Aorta and Carotid Pressure-Area Dynamics Under In Vivo and Ex Vivo Conditions
,”
Ann. Biomed. Eng.
,
39
(
5
), pp.
1438
1456
.
22.
Baek
,
S.
,
Gleason
,
R. L.
,
Rajagopal
,
K. R.
, and
Humphrey
,
J. D.
,
2007
, “
Theory of Small on Large: Potential Utility in Computations of Fluid—Solid Interactions in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
196
(31–32), pp.
3070
3078
.
23.
Humphrey
,
J. D.
, and
Delange
,
S. L.
,
2004
,
An Introduction to Biomechanics: Solids and Fluids, Analysis and Design
,
Springer
,
New York, NY
.
24.
Ryan
,
J.
,
Bloch
,
K.
, and
Archer
,
S. L.
,
2011
, “
Rodent Models of Pulmonary Hypertension: Harmonisation With the World Health Organisation's Categorisation of Human PH
,”
Int. J. Clin. Pract.
,
65
(s
172
), pp.
15
34
.
25.
Gomez-Arroyo
,
J. G.
,
Farkas
,
L.
,
Alhussaini
,
A. A.
,
Farkas
,
D.
,
Kraskauskas
,
D.
,
Voelkel
,
N. F.
, and
Bogaard
,
H. J.
,
2012
, “
The Monocrotaline Model of Pulmonary Hypertension in Perspective
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
302
(
4
), pp.
L363
L369
.
26.
Kay
,
J. M.
,
Harris
,
P.
, and
Heath
,
D.
,
1967
, “
Pulmonary Hypertension Produced in Rats by Ingestion of Crotalaria Spectabilis Seeds
,”
Thorax
,
22
(
2
), pp.
176
179
.
27.
Heath
,
D.
,
1992
, “
The Rat Is a Poor Animal Model for the Study of Human Pulmonary Hypertension
,”
Cardioscience
,
3
(
1
), pp.
1
6
.
28.
Abe
,
K.
,
Toba
,
M.
,
Alzoubi
,
A.
,
Ito
,
M.
,
Fagan
,
K. A.
,
Cool
,
C. D.
,
Voelkel
,
N. F.
,
Mcmurtry
,
I. F.
, and
Oka
,
M.
,
2010
, “
Formation of Plexiform Lesions in Experimental Severe Pulmonary Arterial Hypertension
,”
Circulation
,
121
(
25
), pp.
2747
2754
.
29.
Hill
,
M. R.
,
Duan
,
X.
,
Gibson
,
G. A.
,
Watkins
,
S.
, and
Robertson
,
A. M.
,
2012
, “
A Theoretical and Non-Destructive Experimental Approach for Direct Inclusion of Measured Collagen Orientation and Recruitment Into Mechanical Models of the Artery Wall
,”
ASME J. Biomech.
,
45
(
5
), pp.
762
771
.
30.
Wang
,
Z.
,
Lakes
,
R. S.
,
Golob
,
M.
,
Eickhoff
,
J. C.
, and
Chesler
,
N. C.
,
2013
, “
Changes in Large Pulmonary Arterial Viscoelasticity in Chronic Pulmonary Hypertension
,”
PLoS One
,
8
(
11
), p.
e78569
.
31.
Tian
,
L.
, and
Chesler
,
N. C.
,
2012
, “
In Vivo and In Vitro Measurements of Pulmonary Arterial Stiffness: A Brief Review
,”
Pulm. Circ.
,
2
(
4
), pp.
505
517
.
32.
Keyes
,
J. T.
,
Lockwood
,
D. R.
,
Utzinger
,
U.
,
Montilla
,
L. G.
,
Witte
,
R. S.
, and
Vande Geest
,
J. P.
,
2013
, “
Comparisons of Planar and Tubular Biaxial Tensile Testing Protocols of the Same Porcine Coronary Arteries
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1579
1591
.
You do not currently have access to this content.